Spaces:
Runtime error
Runtime error
import torch | |
from omegaconf import OmegaConf | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import json | |
import os | |
import time | |
DEBUG = False | |
def load_model_from_config(config_path, model_name, device='cuda', load=True): | |
# Load the config file | |
config = OmegaConf.load(config_path) | |
# Instantiate the model | |
model = instantiate_from_config(config.model) | |
# Download the model file from Hugging Face | |
if load: | |
model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors", token=os.getenv('HF_TOKEN')) | |
print(f"Loading model from {model_name}") | |
# Load the state dict | |
state_dict = torch.load(model_file, map_location='cpu') | |
model.load_state_dict(state_dict, strict=False) | |
model.to(device) | |
model.eval() | |
return model | |
def sample_frame(model: LatentDiffusion, prompt: str, image_sequence: torch.Tensor, pos_maps=None, leftclick_maps=None): | |
sampler = DDIMSampler(model) | |
with torch.no_grad(): | |
#u_dict = {'c_crossattn': "", 'c_concat': image_sequence} | |
#uc = model.get_learned_conditioning(u_dict) | |
#uc = model.enc_concat_seq(uc, u_dict, 'c_concat') | |
#c_dict = {'c_crossattn': prompt, 'c_concat': image_sequence} | |
model.eval() | |
#c = model.get_learned_conditioning(c_dict) | |
#print (c['c_crossattn'].shape) | |
#print (c['c_crossattn'][0]) | |
print (prompt) | |
# reshape(B, L * C, H, W) | |
#height, width, channels = image_sequence.shape | |
# use einsum to reshape | |
image_sequence = torch.einsum('hwc->chw', image_sequence).unsqueeze(0) | |
c = {'c_concat': image_sequence} | |
print (image_sequence.shape, c['c_concat'].shape) | |
#c = model.enc_concat_seq(c, c_dict, 'c_concat') | |
# Zero out the corresponding subtensors in c_concat for padding images | |
#padding_mask = torch.isclose(image_sequence, torch.tensor(-1.0), rtol=1e-5, atol=1e-5).all(dim=(1, 2, 3)).unsqueeze(0) | |
#print (padding_mask) | |
#padding_mask = padding_mask.repeat(1, 4) # Repeat mask 4 times for each projected channel | |
#print (image_sequence.shape, padding_mask.shape, c['c_concat'].shape) | |
#c['c_concat'] = c['c_concat'] * (~padding_mask.unsqueeze(-1).unsqueeze(-1)) # Zero out the corresponding features | |
if pos_maps is not None: | |
pos_map = pos_maps[0] | |
leftclick_map = torch.cat(leftclick_maps, dim=0) | |
print (pos_maps[0].shape, c['c_concat'].shape, leftclick_map.shape) | |
if False and DEBUG: | |
c['c_concat'] = c['c_concat']*0 | |
c['c_concat'] = torch.cat([c['c_concat'][:, :, :, :], pos_maps[0].to(c['c_concat'].device).unsqueeze(0), leftclick_map.to(c['c_concat'].device).unsqueeze(0)], dim=1) | |
print ('sleeping') | |
#time.sleep(120) | |
print ('finished sleeping') | |
DDPM = False | |
DDPM = True | |
DDPM = False | |
if DEBUG: | |
#c['c_concat'] = c['c_concat']*0 | |
print ('utils prompt', prompt, c['c_concat'].shape, c.keys()) | |
print (c['c_concat'].nonzero()) | |
#print (c['c_concat'][0, 0, :, :]) | |
if DDPM: | |
samples_ddim = model.p_sample_loop(cond=c, shape=[1, 4, 48, 64], return_intermediates=False, verbose=True) | |
else: | |
samples_ddim, _ = sampler.sample(S=16, | |
conditioning=c, | |
batch_size=1, | |
shape=[4, 48, 64], | |
verbose=False) | |
# unconditional_guidance_scale=5.0, | |
# unconditional_conditioning=uc, | |
# eta=0) | |
print ('dfsf1') | |
if False and DEBUG: | |
print ('samples_ddim.shape', samples_ddim.shape) | |
x_samples_ddim = samples_ddim[:, :3] | |
# upsample to 512 x 384 | |
x_samples_ddim = torch.nn.functional.interpolate(x_samples_ddim, size=(384, 512), mode='bilinear') | |
# create a 512 x 384 image and paste the samples_ddim into the center | |
#x_samples_ddim = torch.zeros((1, 3, 384, 512)) | |
#x_samples_ddim[:, :, 128:128+48, 160:160+64] = samples_ddim[:, :3] | |
else: | |
print ('dfsf2') | |
data_mean = -0.54 | |
data_std = 6.78 | |
data_min = -27.681446075439453 | |
data_max = 30.854148864746094 | |
x_samples_ddim = samples_ddim | |
x_samples_ddim_feedback = x_samples_ddim | |
x_samples_ddim = x_samples_ddim * data_std + data_mean | |
x_samples_ddim = model.decode_first_stage(x_samples_ddim) | |
print ('dfsf3') | |
#x_samples_ddim = pos_map.to(c['c_concat'].device).unsqueeze(0).expand(-1, 3, -1, -1) | |
#x_samples_ddim = model.decode_first_stage(x_samples_ddim) | |
#x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_samples_ddim = torch.clamp(x_samples_ddim, min=-1.0, max=1.0) | |
return x_samples_ddim.squeeze(0).cpu().numpy(), x_samples_ddim_feedback.squeeze(0) | |
# Global variables for model and device | |
#model = None | |
#device = None | |
def initialize_model(config_path, model_name): | |
#global model, device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = load_model_from_config(config_path, model_name, device) | |
return model |