neural-os / worker.py
yuntian-deng's picture
Update worker.py
3540358 verified
from fastapi import FastAPI, HTTPException
from typing import List, Tuple, Dict, Any, Optional
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import json
import asyncio
import time
import torch
import os
import logging
from utils import initialize_model, sample_frame
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler
import concurrent.futures
import aiohttp
import argparse
import uuid
import sys
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# GPU settings
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
class GPUWorker:
def __init__(self, worker_address: str, dispatcher_url: str = "http://localhost:7860"):
self.worker_address = worker_address # e.g., "localhost:8001", "192.168.1.100:8002"
# Parse port from worker address
if ':' in worker_address:
self.host, port_str = worker_address.split(':')
self.port = int(port_str)
else:
raise ValueError(f"Invalid worker address format: {worker_address}. Expected format: 'host:port'")
self.dispatcher_url = dispatcher_url
self.worker_id = f"worker_{worker_address.replace(':', '_')}_{uuid.uuid4().hex[:8]}"
# Always use GPU 0 since CUDA_VISIBLE_DEVICES limits visibility to one GPU
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.current_session: Optional[str] = None
self.session_data: Dict[str, Any] = {}
# Model configuration from main.py
self.DEBUG_MODE = False
self.DEBUG_MODE_2 = False
self.NUM_MAX_FRAMES = 1
self.TIMESTEPS = 1000
self.SCREEN_WIDTH = 512
self.SCREEN_HEIGHT = 384
self.NUM_SAMPLING_STEPS = 32
self.USE_RNN = False
self.MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-joint-onlineonly-222222k7-06k"
self.MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-joint-onlineonly-222222k722-130k"
# Initialize model
self._initialize_model()
# Thread executor for heavy computation
self.thread_executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
# Load keyboard mappings
self._load_keyboard_mappings()
logger.info(f"GPU Worker {self.worker_id} initialized for {self.worker_address} on port {self.port}")
def _initialize_model(self):
"""Initialize the model on the GPU"""
logger.info(f"Initializing model for worker {self.worker_address}")
# Log CUDA environment info
logger.info(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'not set')}")
logger.info(f"Available CUDA devices: {torch.cuda.device_count()}")
if torch.cuda.is_available():
logger.info(f"Current CUDA device: {torch.cuda.current_device()}")
logger.info(f"Device name: {torch.cuda.get_device_name(0)}") # Always GPU 0
# Load latent stats
with open('latent_stats.json', 'r') as f:
latent_stats = json.load(f)
self.DATA_NORMALIZATION = {
'mean': torch.tensor(latent_stats['mean']).to(self.device),
'std': torch.tensor(latent_stats['std']).to(self.device)
}
self.LATENT_DIMS = (16, self.SCREEN_HEIGHT // 8, self.SCREEN_WIDTH // 8)
# Initialize model based on model name
if 'origunet' in self.MODEL_NAME:
if 'x0' in self.MODEL_NAME:
if 'ddpm32' in self.MODEL_NAME:
self.TIMESTEPS = 32
self.model = initialize_model("config_final_model_origunet_nospatial_x0_ddpm32.yaml", self.MODEL_NAME)
else:
self.model = initialize_model("config_final_model_origunet_nospatial_x0.yaml", self.MODEL_NAME)
else:
if 'ddpm32' in self.MODEL_NAME:
self.TIMESTEPS = 32
self.model = initialize_model("config_final_model_origunet_nospatial_ddpm32.yaml", self.MODEL_NAME)
else:
self.model = initialize_model("config_final_model_origunet_nospatial.yaml", self.MODEL_NAME)
else:
self.model = initialize_model("config_final_model.yaml", self.MODEL_NAME)
self.model = self.model.to(self.device)
# Create padding image
self.padding_image = torch.zeros(*self.LATENT_DIMS).unsqueeze(0).to(self.device)
self.padding_image = (self.padding_image - self.DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)) / self.DATA_NORMALIZATION['std'].view(1, -1, 1, 1)
logger.info(f"Model initialized successfully for worker {self.worker_address}")
def _load_keyboard_mappings(self):
"""Load keyboard mappings from main.py"""
self.KEYS = ['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(',
')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~',
'accept', 'add', 'alt', 'altleft', 'altright', 'apps', 'backspace',
'browserback', 'browserfavorites', 'browserforward', 'browserhome',
'browserrefresh', 'browsersearch', 'browserstop', 'capslock', 'clear',
'convert', 'ctrl', 'ctrlleft', 'ctrlright', 'decimal', 'del', 'delete',
'divide', 'down', 'end', 'enter', 'esc', 'escape', 'execute', 'f1', 'f10',
'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20',
'f21', 'f22', 'f23', 'f24', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9',
'final', 'fn', 'hanguel', 'hangul', 'hanja', 'help', 'home', 'insert', 'junja',
'kana', 'kanji', 'launchapp1', 'launchapp2', 'launchmail',
'launchmediaselect', 'left', 'modechange', 'multiply', 'nexttrack',
'nonconvert', 'num0', 'num1', 'num2', 'num3', 'num4', 'num5', 'num6',
'num7', 'num8', 'num9', 'numlock', 'pagedown', 'pageup', 'pause', 'pgdn',
'pgup', 'playpause', 'prevtrack', 'print', 'printscreen', 'prntscrn',
'prtsc', 'prtscr', 'return', 'right', 'scrolllock', 'select', 'separator',
'shift', 'shiftleft', 'shiftright', 'sleep', 'space', 'stop', 'subtract', 'tab',
'up', 'volumedown', 'volumemute', 'volumeup', 'win', 'winleft', 'winright', 'yen',
'command', 'option', 'optionleft', 'optionright']
self.KEYMAPPING = {
'arrowup': 'up',
'arrowdown': 'down',
'arrowleft': 'left',
'arrowright': 'right',
'meta': 'command',
'contextmenu': 'apps',
'control': 'ctrl',
}
self.INVALID_KEYS = ['f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f20',
'f21', 'f22', 'f23', 'f24', 'select', 'separator', 'execute']
self.VALID_KEYS = [key for key in self.KEYS if key not in self.INVALID_KEYS]
self.itos = self.VALID_KEYS
self.stoi = {key: i for i, key in enumerate(self.itos)}
async def register_with_dispatcher(self):
"""Register this worker with the dispatcher"""
logger.info(f"πŸ”— Attempting to register with dispatcher at {self.dispatcher_url}")
logger.info(f"πŸ“Š Worker details: ID={self.worker_id}, Address={self.worker_address}")
# Test basic connectivity first
logger.info(f"πŸ§ͺ Testing basic connectivity to dispatcher...")
try:
async with aiohttp.ClientSession() as session:
async with session.get(f"{self.dispatcher_url}/") as response:
logger.info(f"🌐 Connectivity test successful - dispatcher responded with status {response.status}")
except Exception as e:
logger.error(f"❌ Connectivity test FAILED: {e}")
logger.error(f"πŸ” This means the dispatcher is not reachable at {self.dispatcher_url}")
raise
try:
registration_data = {
"worker_id": self.worker_id,
"worker_address": self.worker_address,
"endpoint": f"http://{self.worker_address}"
}
logger.info(f"πŸ“€ Sending registration data: {registration_data}")
async with aiohttp.ClientSession() as session:
logger.info(f"🌐 Making POST request to {self.dispatcher_url}/register_worker")
async with session.post(f"{self.dispatcher_url}/register_worker", json=registration_data) as response:
logger.info(f"πŸ“₯ Dispatcher response status: {response.status}")
response_text = await response.text()
logger.info(f"πŸ“₯ Dispatcher response body: {response_text}")
if response.status == 200:
logger.info(f"βœ… Successfully registered worker {self.worker_id} ({self.worker_address}) with dispatcher")
else:
logger.error(f"❌ Dispatcher returned error status {response.status}: {response_text}")
except Exception as e:
logger.error(f"❌ Failed to register with dispatcher: {e}")
logger.error(f"πŸ” Exception type: {type(e)}")
logger.error(f"πŸ” Dispatcher URL: {self.dispatcher_url}")
import traceback
logger.error(f"πŸ” Full traceback: {traceback.format_exc()}")
async def ping_dispatcher(self):
"""Periodically ping the dispatcher to maintain connection"""
while True:
try:
async with aiohttp.ClientSession() as session:
await session.post(f"{self.dispatcher_url}/worker_ping", json={
"worker_id": self.worker_id,
"is_available": self.current_session is None
})
await asyncio.sleep(10) # Ping every 10 seconds
except Exception as e:
logger.error(f"Failed to ping dispatcher: {e}")
await asyncio.sleep(5) # Retry after 5 seconds on error
def prepare_model_inputs(
self,
previous_frame: torch.Tensor,
hidden_states: Any,
x: int,
y: int,
right_click: bool,
left_click: bool,
keys_down: List[str],
time_step: int
) -> Dict[str, torch.Tensor]:
"""Prepare inputs for the model (from main.py)"""
# Clamp coordinates to valid ranges
x = min(max(0, x), self.SCREEN_WIDTH - 1) if x is not None else 0
y = min(max(0, y), self.SCREEN_HEIGHT - 1) if y is not None else 0
if self.DEBUG_MODE:
logger.info('DEBUG MODE, SETTING TIME STEP TO 0')
time_step = 0
if self.DEBUG_MODE_2:
if time_step > self.NUM_MAX_FRAMES-1:
logger.info('DEBUG MODE_2, SETTING TIME STEP TO 0')
time_step = 0
inputs = {
'image_features': previous_frame.to(self.device),
'is_padding': torch.BoolTensor([time_step == 0]).to(self.device),
'x': torch.LongTensor([x]).unsqueeze(0).to(self.device),
'y': torch.LongTensor([y]).unsqueeze(0).to(self.device),
'is_leftclick': torch.BoolTensor([left_click]).unsqueeze(0).to(self.device),
'is_rightclick': torch.BoolTensor([right_click]).unsqueeze(0).to(self.device),
'key_events': torch.zeros(len(self.itos), dtype=torch.long).to(self.device)
}
for key in keys_down:
key = key.lower()
if key in self.KEYMAPPING:
key = self.KEYMAPPING[key]
if key in self.stoi:
inputs['key_events'][self.stoi[key]] = 1
else:
logger.warning(f'Key {key} not found in stoi')
if hidden_states is not None:
inputs['hidden_states'] = hidden_states
if self.DEBUG_MODE:
logger.info('DEBUG MODE, REMOVING INPUTS')
if 'hidden_states' in inputs:
del inputs['hidden_states']
if self.DEBUG_MODE_2:
if time_step > self.NUM_MAX_FRAMES-1:
logger.info('DEBUG MODE_2, REMOVING HIDDEN STATES')
if 'hidden_states' in inputs:
del inputs['hidden_states']
logger.info(f'Time step: {time_step}')
return inputs
@torch.no_grad()
async def process_frame(
self,
inputs: Dict[str, torch.Tensor],
use_rnn: bool = False,
num_sampling_steps: int = 32
) -> Tuple[torch.Tensor, np.ndarray, Any, Dict[str, float]]:
"""Process a single frame through the model"""
# Run the heavy computation in a separate thread
loop = asyncio.get_running_loop()
return await loop.run_in_executor(
self.thread_executor,
lambda: self._process_frame_sync(inputs, use_rnn, num_sampling_steps)
)
def _process_frame_sync(self, inputs, use_rnn, num_sampling_steps):
"""Synchronous version of process_frame that runs in a thread"""
timing = {}
# Temporal encoding
start = time.perf_counter()
output_from_rnn, hidden_states = self.model.temporal_encoder.forward_step(inputs)
timing['temporal_encoder'] = time.perf_counter() - start
# UNet sampling
start = time.perf_counter()
logger.info(f"model.clip_denoised: {self.model.clip_denoised}")
self.model.clip_denoised = False
logger.info(f"USE_RNN: {use_rnn}, NUM_SAMPLING_STEPS: {num_sampling_steps}")
if use_rnn:
sample_latent = output_from_rnn[:, :16]
else:
if num_sampling_steps >= self.TIMESTEPS:
sample_latent = self.model.p_sample_loop(
cond={'c_concat': output_from_rnn},
shape=[1, *self.LATENT_DIMS],
return_intermediates=False,
verbose=True
)
else:
if num_sampling_steps == 1:
x = torch.randn([1, *self.LATENT_DIMS], device=self.device)
t = torch.full((1,), self.TIMESTEPS-1, device=self.device, dtype=torch.long)
sample_latent = self.model.apply_model(x, t, {'c_concat': output_from_rnn})
else:
sampler = DDIMSampler(self.model)
sample_latent, _ = sampler.sample(
S=num_sampling_steps,
conditioning={'c_concat': output_from_rnn},
batch_size=1,
shape=self.LATENT_DIMS,
verbose=False
)
timing['unet'] = time.perf_counter() - start
# Decoding
start = time.perf_counter()
sample = sample_latent * self.DATA_NORMALIZATION['std'].view(1, -1, 1, 1) + self.DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)
sample = self.model.decode_first_stage(sample)
sample = sample.squeeze(0).clamp(-1, 1)
timing['decode'] = time.perf_counter() - start
# Convert to image
sample_img = ((sample[:3].transpose(0,1).transpose(1,2).cpu().float().numpy() + 1) * 127.5).astype(np.uint8)
timing['total'] = sum(timing.values())
return sample_latent, sample_img, hidden_states, timing
def initialize_session(self, session_id: str, client_id: str = None):
"""Initialize a new session"""
self.current_session = session_id
# Use client_id from dispatcher if provided, otherwise create one
if client_id:
log_session_id = client_id
else:
# Fallback: create a time-prefixed session identifier for logging
session_start_time = int(time.time())
log_session_id = f"{session_start_time}_{session_id}"
self.session_data[session_id] = {
'previous_frame': self.padding_image,
'hidden_states': None,
'keys_down': set(),
'frame_num': -1,
'client_settings': {
'use_rnn': self.USE_RNN,
'sampling_steps': self.NUM_SAMPLING_STEPS
},
'input_queue': asyncio.Queue(),
'is_processing': False,
'log_session_id': log_session_id # Store the time-prefixed ID for logging
}
logger.info(f"Initialized session {session_id} with log ID {log_session_id}")
# Start processing task for this session
asyncio.create_task(self._process_session_queue(session_id))
def end_session(self, session_id: str):
"""End a session and clean up"""
if session_id in self.session_data:
# Log session end using the stored log_session_id
session = self.session_data[session_id]
log_session_id = session.get('log_session_id', session_id) # Fallback to session_id if not found
log_interaction(log_session_id, {}, is_end_of_session=True)
# Clear any remaining items in the queue
while not session['input_queue'].empty():
try:
session['input_queue'].get_nowait()
session['input_queue'].task_done()
except asyncio.QueueEmpty:
break
del self.session_data[session_id]
if self.current_session == session_id:
self.current_session = None
logger.info(f"Ended session {session_id}")
async def _process_session_queue(self, session_id: str):
"""Process the input queue for a specific session with interesting input filtering"""
while session_id in self.session_data:
try:
session = self.session_data[session_id]
input_queue = session['input_queue']
# Wait for input to be available
if input_queue.empty():
await asyncio.sleep(0.01) # Small delay to prevent busy waiting
continue
# If already processing, skip
if session['is_processing']:
await asyncio.sleep(0.01)
continue
# Set processing flag
session['is_processing'] = True
try:
# Process queue with interesting input filtering
await self._process_next_input(session_id)
finally:
session['is_processing'] = False
except Exception as e:
logger.error(f"Error in session queue processing for {session_id}: {e}")
import traceback
traceback.print_exc()
await asyncio.sleep(1) # Prevent tight error loop
logger.info(f"Session queue processor ended for {session_id}")
async def _process_next_input(self, session_id: str):
"""Process next input with interesting input filtering (from main.py logic)"""
session = self.session_data[session_id]
input_queue = session['input_queue']
if input_queue.empty():
return
queue_size = input_queue.qsize()
logger.info(f"Processing next input for session {session_id}. Queue size: {queue_size}")
try:
# Initialize variables to track progress
skipped = 0
latest_input = None
# Process the queue one item at a time
while not input_queue.empty():
current_input = await input_queue.get()
input_queue.task_done()
# Always update the latest input
latest_input = current_input
# Check if this is an interesting event
CONSIDER_SCROLL = False # TODO: consider scroll in future versions
if CONSIDER_SCROLL:
is_interesting = (current_input.get("is_left_click") or
current_input.get("is_right_click") or
(current_input.get("keys_down") and len(current_input.get("keys_down")) > 0) or
(current_input.get("keys_up") and len(current_input.get("keys_up")) > 0) or
current_input.get("wheel_delta_x", 0) != 0 or
current_input.get("wheel_delta_y", 0) != 0)
else:
is_interesting = (current_input.get("is_left_click") or
current_input.get("is_right_click") or
(current_input.get("keys_down") and len(current_input.get("keys_down")) > 0) or
(current_input.get("keys_up") and len(current_input.get("keys_up")) > 0))
# Process immediately if interesting
if is_interesting:
logger.info(f"Found interesting input for session {session_id} (skipped {skipped} events)")
await self._process_single_input(session_id, current_input)
return
# Otherwise, continue to the next item
skipped += 1
# If this is the last item and no interesting inputs were found
if input_queue.empty():
logger.info(f"No interesting inputs for session {session_id}, processing latest movement (skipped {skipped-1} events)")
await self._process_single_input(session_id, latest_input)
return
except Exception as e:
logger.error(f"Error in _process_next_input for session {session_id}: {e}")
import traceback
traceback.print_exc()
async def process_input(self, session_id: str, data: dict) -> dict:
"""Process input for a session - adds to queue or handles control messages"""
if session_id not in self.session_data:
self.initialize_session(session_id) # Fallback initialization without client_id
session = self.session_data[session_id]
# Handle control messages immediately (don't queue these)
if data.get("type") == "reset":
logger.info(f"Received reset command for session {session_id}")
# Log the reset action using the stored log_session_id
log_session_id = session.get('log_session_id', session_id) # Fallback to session_id if not found
log_interaction(log_session_id, data, is_reset=True)
# Clear the queue
while not session['input_queue'].empty():
try:
session['input_queue'].get_nowait()
session['input_queue'].task_done()
except asyncio.QueueEmpty:
break
session['previous_frame'] = self.padding_image
session['hidden_states'] = None
session['keys_down'] = set()
session['frame_num'] = -1
return {"type": "reset_confirmed"}
elif data.get("type") == "update_sampling_steps":
steps = data.get("steps", 32)
if steps < 1:
return {"type": "error", "message": "Invalid sampling steps value"}
session['client_settings']['sampling_steps'] = steps
logger.info(f"Updated sampling steps to {steps} for session {session_id}")
return {"type": "steps_updated", "steps": steps}
elif data.get("type") == "update_use_rnn":
use_rnn = data.get("use_rnn", False)
session['client_settings']['use_rnn'] = use_rnn
logger.info(f"Updated USE_RNN to {use_rnn} for session {session_id}")
return {"type": "rnn_updated", "use_rnn": use_rnn}
elif data.get("type") == "get_settings":
return {
"type": "settings",
"sampling_steps": session['client_settings']['sampling_steps'],
"use_rnn": session['client_settings']['use_rnn']
}
elif data.get("type") == "heartbeat":
return {"type": "heartbeat_response"}
# For regular input data, add to queue and return immediately
# The actual processing will happen asynchronously in the queue processor
await session['input_queue'].put(data)
queue_size = session['input_queue'].qsize()
logger.info(f"Added input to queue for session {session_id}. Queue size: {queue_size}")
# Return a placeholder response - the real response will be sent via WebSocket
return {"type": "queued", "queue_size": queue_size}
async def _process_single_input(self, session_id: str, data: dict):
"""Process a single input for a session (the actual processing logic)"""
session = self.session_data[session_id]
# Process regular input
try:
session['frame_num'] += 1
# Extract input data
x = max(0, min(data.get("x", 0), self.SCREEN_WIDTH - 1))
y = max(0, min(data.get("y", 0), self.SCREEN_HEIGHT - 1))
is_left_click = data.get("is_left_click", False)
is_right_click = data.get("is_right_click", False)
keys_down_list = data.get("keys_down", [])
keys_up_list = data.get("keys_up", [])
wheel_delta_x = data.get("wheel_delta_x", 0)
wheel_delta_y = data.get("wheel_delta_y", 0)
# Update keys_down set
for key in keys_down_list:
key = key.lower()
if key in self.KEYMAPPING:
key = self.KEYMAPPING[key]
session['keys_down'].add(key)
for key in keys_up_list:
key = key.lower()
if key in self.KEYMAPPING:
key = self.KEYMAPPING[key]
session['keys_down'].discard(key)
# Handle debug modes
if self.DEBUG_MODE:
logger.info("DEBUG MODE, REMOVING HIDDEN STATES")
session['previous_frame'] = self.padding_image
if self.DEBUG_MODE_2:
if session['frame_num'] > self.NUM_MAX_FRAMES-1:
logger.info("DEBUG MODE_2, REMOVING HIDDEN STATES")
session['previous_frame'] = self.padding_image
session['frame_num'] = 0
# Prepare model inputs
inputs = self.prepare_model_inputs(
session['previous_frame'],
session['hidden_states'],
x, y, is_right_click, is_left_click,
list(session['keys_down']),
session['frame_num']
)
# Log the input data being processed
logger.info(f"Processing frame {session['frame_num']} for session {session_id}: "
f"pos=({x},{y}), clicks=(L:{is_left_click},R:{is_right_click}), "
f"keys_down={keys_down_list}, keys_up={keys_up_list}, "
f"wheel=({wheel_delta_x},{wheel_delta_y})")
# Process frame
sample_latent, sample_img, hidden_states, timing_info = await self.process_frame(
inputs,
use_rnn=session['client_settings']['use_rnn'],
num_sampling_steps=session['client_settings']['sampling_steps']
)
# Update session state
session['previous_frame'] = sample_latent
session['hidden_states'] = hidden_states
# Convert image to base64
img = Image.fromarray(sample_img)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Log timing
logger.info(f"Frame {session['frame_num']} processed in {timing_info['total']:.4f}s (FPS: {1.0/timing_info['total']:.2f})")
# Log the interaction using the stored log_session_id
log_session_id = session.get('log_session_id', session_id) # Fallback to session_id if not found
log_interaction(log_session_id, data, generated_frame=sample_img)
# Send result back to dispatcher
await self._send_result_to_dispatcher(session_id, {"image": img_str})
except Exception as e:
logger.error(f"Error processing input for session {session_id}: {e}")
import traceback
traceback.print_exc()
await self._send_result_to_dispatcher(session_id, {"type": "error", "message": str(e)})
async def _send_result_to_dispatcher(self, session_id: str, result: dict):
"""Send processing result back to dispatcher"""
try:
async with aiohttp.ClientSession() as client_session:
await client_session.post(f"{self.dispatcher_url}/worker_result", json={
"session_id": session_id,
"worker_id": self.worker_id,
"result": result
})
except Exception as e:
logger.error(f"Failed to send result to dispatcher: {e}")
# FastAPI app for the worker
app = FastAPI()
# Global worker instance
worker: Optional[GPUWorker] = None
def log_interaction(log_session_id, data, generated_frame=None, is_end_of_session=False, is_reset=False):
"""Log user interaction and optionally the generated frame."""
timestamp = time.time()
# Create directory structure if it doesn't exist
os.makedirs("interaction_logs", exist_ok=True)
# Structure the log entry
log_entry = {
"timestamp": timestamp,
"session_id": log_session_id, # Use the time-prefixed session ID
"is_eos": is_end_of_session,
"is_reset": is_reset
}
# Include type if present (for reset, etc.)
if data.get("type"):
log_entry["type"] = data.get("type")
# Only include input data if this isn't just a control message
if not is_end_of_session and not is_reset:
log_entry["inputs"] = {
"x": data.get("x"),
"y": data.get("y"),
"is_left_click": data.get("is_left_click"),
"is_right_click": data.get("is_right_click"),
"keys_down": data.get("keys_down", []),
"keys_up": data.get("keys_up", []),
"wheel_delta_x": data.get("wheel_delta_x", 0),
"wheel_delta_y": data.get("wheel_delta_y", 0),
"is_auto_input": data.get("is_auto_input", False)
}
else:
# For EOS/reset records, just include minimal info
log_entry["inputs"] = None
# Use the time-prefixed session ID for the filename (already includes timestamp)
session_file = f"interaction_logs/session_{log_session_id}.jsonl"
with open(session_file, "a") as f:
f.write(json.dumps(log_entry) + "\n")
# Optionally save the frame if provided
if generated_frame is not None and not is_end_of_session and not is_reset:
frame_dir = f"interaction_logs/frames_{log_session_id}"
os.makedirs(frame_dir, exist_ok=True)
frame_file = f"{frame_dir}/{timestamp:.6f}.png"
# Save the frame as PNG
Image.fromarray(generated_frame).save(frame_file)
@app.post("/process_input")
async def process_input_endpoint(request: dict):
"""Process input from dispatcher"""
if not worker:
raise HTTPException(status_code=500, detail="Worker not initialized")
session_id = request.get("session_id")
data = request.get("data")
if not session_id or not data:
raise HTTPException(status_code=400, detail="Missing session_id or data")
result = await worker.process_input(session_id, data)
return result
@app.post("/init_session")
async def init_session_endpoint(request: dict):
"""Initialize session from dispatcher with client_id"""
if not worker:
raise HTTPException(status_code=500, detail="Worker not initialized")
session_id = request.get("session_id")
client_id = request.get("client_id")
if not session_id:
raise HTTPException(status_code=400, detail="Missing session_id")
worker.initialize_session(session_id, client_id)
return {"status": "session_initialized"}
@app.post("/end_session")
async def end_session_endpoint(request: dict):
"""End session from dispatcher"""
if not worker:
raise HTTPException(status_code=500, detail="Worker not initialized")
session_id = request.get("session_id")
if not session_id:
raise HTTPException(status_code=400, detail="Missing session_id")
worker.end_session(session_id)
return {"status": "session_ended"}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"worker_id": worker.worker_id if worker else None,
"worker_address": worker.worker_address if worker else None,
"port": worker.port if worker else None,
"current_session": worker.current_session if worker else None
}
async def startup_worker(worker_address: str, dispatcher_url: str):
"""Initialize the worker"""
logger.info(f"πŸ”§ Initializing worker with address {worker_address}")
global worker
worker = GPUWorker(worker_address, dispatcher_url)
logger.info(f"πŸ—οΈ Worker object created: {worker.worker_id}")
# Register with dispatcher
logger.info(f"πŸ“ž About to register with dispatcher")
await worker.register_with_dispatcher()
logger.info(f"πŸ“ Registration attempt completed")
# Start ping task
logger.info(f"πŸ’“ Starting ping task")
asyncio.create_task(worker.ping_dispatcher())
logger.info(f"βœ… Worker initialization completed")
if __name__ == "__main__":
import uvicorn
# Parse command line arguments
parser = argparse.ArgumentParser(description="GPU Worker for Neural OS")
parser.add_argument("--worker-address", type=str, required=True, help="Worker address (e.g., 'localhost:8001', '192.168.1.100:8002')")
parser.add_argument("--dispatcher-url", type=str, default="http://localhost:7860", help="Dispatcher URL")
args = parser.parse_args()
# Parse port from worker address for validation
if ':' not in args.worker_address:
print(f"Error: Invalid worker address format: {args.worker_address}")
print("Expected format: 'host:port' (e.g., 'localhost:8001')")
sys.exit(1)
try:
host, port_str = args.worker_address.split(':')
port = int(port_str)
except ValueError:
print(f"Error: Invalid port in worker address: {args.worker_address}")
sys.exit(1)
@app.on_event("startup")
async def startup_event():
logger.info(f"πŸš€ Worker startup event triggered for {args.worker_address}")
await startup_worker(args.worker_address, args.dispatcher_url)
logger.info(f"βœ… Worker startup complete for {args.worker_address}")
logger.info(f"🌐 Starting worker {args.worker_address} on 0.0.0.0:{port}")
logger.info(f"πŸ”— Worker will be available at http://{args.worker_address}")
logger.info(f"πŸ“‘ Will register with dispatcher at {args.dispatcher_url}")
try:
uvicorn.run(app, host="0.0.0.0", port=port)
except Exception as e:
logger.error(f"❌ Failed to start worker: {e}")
import traceback
logger.error(f"πŸ” Full traceback: {traceback.format_exc()}")
raise