Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
04846cf
1
Parent(s):
2d60859
main.py
CHANGED
@@ -25,7 +25,7 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
25 |
DEBUG_MODE = False
|
26 |
DEBUG_MODE_2 = False
|
27 |
NUM_MAX_FRAMES = 1
|
28 |
-
|
29 |
SCREEN_WIDTH = 512
|
30 |
SCREEN_HEIGHT = 384
|
31 |
NUM_SAMPLING_STEPS = 32
|
@@ -48,8 +48,15 @@ MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd
|
|
48 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-unfreezernn-198k"
|
49 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-674k"
|
50 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-online-74k"
|
51 |
-
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-online-x0-22k"
|
52 |
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-online-70k"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
print (f'setting: DEBUG_MODE: {DEBUG_MODE}, DEBUG_MODE_2: {DEBUG_MODE_2}, NUM_MAX_FRAMES: {NUM_MAX_FRAMES}, NUM_SAMPLING_STEPS: {NUM_SAMPLING_STEPS}, MODEL_NAME: {MODEL_NAME}')
|
@@ -67,9 +74,17 @@ LATENT_DIMS = (16, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
|
|
67 |
|
68 |
if 'origunet' in MODEL_NAME:
|
69 |
if 'x0' in MODEL_NAME:
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
else:
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
model = initialize_model("config_final_model.yaml", MODEL_NAME)
|
75 |
|
@@ -205,12 +220,12 @@ def _process_frame_sync(model, inputs, use_rnn, num_sampling_steps):
|
|
205 |
sample_latent = output_from_rnn[:, :16]
|
206 |
else:
|
207 |
#NUM_SAMPLING_STEPS = 8
|
208 |
-
if num_sampling_steps >=
|
209 |
sample_latent = model.p_sample_loop(cond={'c_concat': output_from_rnn}, shape=[1, *LATENT_DIMS], return_intermediates=False, verbose=True)
|
210 |
else:
|
211 |
if num_sampling_steps == 1:
|
212 |
x = torch.randn([1, *LATENT_DIMS], device=device)
|
213 |
-
t = torch.full((1,),
|
214 |
sample_latent = model.apply_model(x, t, {'c_concat': output_from_rnn})
|
215 |
else:
|
216 |
sampler = DDIMSampler(model)
|
|
|
25 |
DEBUG_MODE = False
|
26 |
DEBUG_MODE_2 = False
|
27 |
NUM_MAX_FRAMES = 1
|
28 |
+
TIMESTEPS = 1000
|
29 |
SCREEN_WIDTH = 512
|
30 |
SCREEN_HEIGHT = 384
|
31 |
NUM_SAMPLING_STEPS = 32
|
|
|
48 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-unfreezernn-198k"
|
49 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-674k"
|
50 |
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-online-74k"
|
|
|
51 |
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-online-70k"
|
52 |
+
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-online-x0-46k"
|
53 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-142k"
|
54 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-338k"
|
55 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-ddpm32-x0-140k"
|
56 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-ddpm32-eps-144k"
|
57 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-joint-onlineonly-70k"
|
58 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-joint-onlineonly-eps22-40k"
|
59 |
+
MODEL_NAME = "yuntian-deng/computer-model-s-newnewd-freezernn-origunet-nospatial-online-x0-joint-onlineonly-22-38k"
|
60 |
|
61 |
|
62 |
print (f'setting: DEBUG_MODE: {DEBUG_MODE}, DEBUG_MODE_2: {DEBUG_MODE_2}, NUM_MAX_FRAMES: {NUM_MAX_FRAMES}, NUM_SAMPLING_STEPS: {NUM_SAMPLING_STEPS}, MODEL_NAME: {MODEL_NAME}')
|
|
|
74 |
|
75 |
if 'origunet' in MODEL_NAME:
|
76 |
if 'x0' in MODEL_NAME:
|
77 |
+
if 'ddpm32' in MODEL_NAME:
|
78 |
+
TIMESTEPS = 32
|
79 |
+
model = initialize_model("config_final_model_origunet_nospatial_x0_ddpm32.yaml", MODEL_NAME)
|
80 |
+
else:
|
81 |
+
model = initialize_model("config_final_model_origunet_nospatial_x0.yaml", MODEL_NAME)
|
82 |
else:
|
83 |
+
if 'ddpm32' in MODEL_NAME:
|
84 |
+
TIMESTEPS = 32
|
85 |
+
model = initialize_model("config_final_model_origunet_nospatial_ddpm32.yaml", MODEL_NAME)
|
86 |
+
else:
|
87 |
+
model = initialize_model("config_final_model_origunet_nospatial.yaml", MODEL_NAME)
|
88 |
else:
|
89 |
model = initialize_model("config_final_model.yaml", MODEL_NAME)
|
90 |
|
|
|
220 |
sample_latent = output_from_rnn[:, :16]
|
221 |
else:
|
222 |
#NUM_SAMPLING_STEPS = 8
|
223 |
+
if num_sampling_steps >= TIMESTEPS:
|
224 |
sample_latent = model.p_sample_loop(cond={'c_concat': output_from_rnn}, shape=[1, *LATENT_DIMS], return_intermediates=False, verbose=True)
|
225 |
else:
|
226 |
if num_sampling_steps == 1:
|
227 |
x = torch.randn([1, *LATENT_DIMS], device=device)
|
228 |
+
t = torch.full((1,), TIMESTEPS-1, device=device, dtype=torch.long)
|
229 |
sample_latent = model.apply_model(x, t, {'c_concat': output_from_rnn})
|
230 |
else:
|
231 |
sampler = DDIMSampler(model)
|