Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
100405c
1
Parent(s):
b8ac450
- config_final_model.yaml +104 -0
- latent_stats.json +0 -0
- main.py +13 -9
config_final_model.yaml
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
save_path: saved_standard_challenging_context32_nocond_cont_cont_all_cont_eval
|
2 |
+
|
3 |
+
model:
|
4 |
+
base_learning_rate: 8.0e-05
|
5 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
6 |
+
params:
|
7 |
+
linear_start: 0.0015
|
8 |
+
linear_end: 0.0195
|
9 |
+
num_timesteps_cond: 1
|
10 |
+
log_every_t: 200
|
11 |
+
timesteps: 1000
|
12 |
+
first_stage_key: image
|
13 |
+
cond_stage_key: action_
|
14 |
+
scheduler_sampling_rate: 0.0
|
15 |
+
hybrid_key: c_concat
|
16 |
+
image_size: [64, 48]
|
17 |
+
channels: 3
|
18 |
+
cond_stage_trainable: false
|
19 |
+
conditioning_key: hybrid
|
20 |
+
monitor: val/loss_simple_ema
|
21 |
+
|
22 |
+
unet_config:
|
23 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
24 |
+
params:
|
25 |
+
image_size: [64, 48]
|
26 |
+
in_channels: 48
|
27 |
+
out_channels: 16
|
28 |
+
model_channels: 512
|
29 |
+
attention_resolutions: []
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult:
|
32 |
+
- 1
|
33 |
+
- 2
|
34 |
+
num_head_channels: 32
|
35 |
+
use_spatial_transformer: false
|
36 |
+
transformer_depth: 1
|
37 |
+
|
38 |
+
temporal_encoder_config:
|
39 |
+
target: ldm.modules.encoders.temporal_encoder.TemporalEncoder
|
40 |
+
params:
|
41 |
+
input_channels: 16
|
42 |
+
hidden_size: 4096
|
43 |
+
num_layers: 1
|
44 |
+
dropout: 0.1
|
45 |
+
output_channels: 32
|
46 |
+
output_height: 48
|
47 |
+
output_width: 64
|
48 |
+
|
49 |
+
first_stage_config:
|
50 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
51 |
+
params:
|
52 |
+
embed_dim: 16
|
53 |
+
monitor: val/rec_loss
|
54 |
+
ddconfig:
|
55 |
+
double_z: true
|
56 |
+
z_channels: 16
|
57 |
+
resolution: 256
|
58 |
+
in_channels: 3
|
59 |
+
out_ch: 3
|
60 |
+
ch: 128
|
61 |
+
ch_mult:
|
62 |
+
- 1
|
63 |
+
- 2
|
64 |
+
- 4
|
65 |
+
- 4
|
66 |
+
num_res_blocks: 2
|
67 |
+
attn_resolutions: []
|
68 |
+
dropout: 0.0
|
69 |
+
lossconfig:
|
70 |
+
target: torch.nn.Identity
|
71 |
+
|
72 |
+
cond_stage_config: __is_unconditional__
|
73 |
+
|
74 |
+
data:
|
75 |
+
target: data.data_processing.datasets.DataModule
|
76 |
+
params:
|
77 |
+
batch_size: 8
|
78 |
+
num_workers: 1
|
79 |
+
wrap: false
|
80 |
+
shuffle: True
|
81 |
+
drop_last: True
|
82 |
+
pin_memory: True
|
83 |
+
prefetch_factor: 2
|
84 |
+
persistent_workers: True
|
85 |
+
train:
|
86 |
+
target: data.data_processing.datasets.ActionsData
|
87 |
+
params:
|
88 |
+
data_csv_path: desktop_sequences_filtered_with_desktop_1.5k.challenging.train.target_frames.csv
|
89 |
+
normalization: standard
|
90 |
+
context_length: 32
|
91 |
+
#validation:
|
92 |
+
# target: data.data_processing.datasets.ActionsData
|
93 |
+
# params:
|
94 |
+
|
95 |
+
lightning:
|
96 |
+
trainer:
|
97 |
+
benchmark: False
|
98 |
+
max_epochs: 6400
|
99 |
+
limit_val_batches: 0
|
100 |
+
accelerator: gpu
|
101 |
+
gpus: 1
|
102 |
+
accumulate_grad_batches: 999999
|
103 |
+
gradient_clip_val: 1
|
104 |
+
checkpoint_callback: True
|
latent_stats.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
main.py
CHANGED
@@ -17,21 +17,25 @@ import concurrent.futures
|
|
17 |
|
18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
19 |
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
|
|
|
|
|
|
|
20 |
SCREEN_WIDTH = 512
|
21 |
SCREEN_HEIGHT = 384
|
22 |
NUM_SAMPLING_STEPS = 8
|
23 |
-
DATA_NORMALIZATION = {
|
24 |
-
'mean': -0.54,
|
25 |
-
'std': 6.78,
|
26 |
-
}
|
27 |
-
LATENT_DIMS = (4, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
# Initialize the model at the start of your application
|
31 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
32 |
-
model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
|
|
|
33 |
|
34 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
model = model.to(device)
|
36 |
#model = torch.compile(model)
|
37 |
|
@@ -148,7 +152,7 @@ def _process_frame_sync(model, inputs):
|
|
148 |
|
149 |
# Decoding
|
150 |
start = time.perf_counter()
|
151 |
-
sample = sample_latent * DATA_NORMALIZATION['std'] + DATA_NORMALIZATION['mean']
|
152 |
|
153 |
# Use time.sleep(10) here since it's in a separate thread
|
154 |
#time.sleep(10)
|
|
|
17 |
|
18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
19 |
torch.backends.cudnn.allow_tf32 = True
|
20 |
+
|
21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
SCREEN_WIDTH = 512
|
26 |
SCREEN_HEIGHT = 384
|
27 |
NUM_SAMPLING_STEPS = 8
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
with open('latent_stats.json', 'r') as f:
|
30 |
+
latent_stats = json.load(f)
|
31 |
+
DATA_NORMALIZATION = {'mean': torch.tensor(latent_stats['mean']).to(device), 'std': torch.tensor(latent_stats['std']).to(device)}
|
32 |
+
LATENT_DIMS = latent_stats['latent_dims']
|
33 |
+
|
34 |
# Initialize the model at the start of your application
|
35 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
36 |
+
#model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
|
37 |
+
model = initialize_model("config_final_model.yaml", "yuntian-deng/computer-model")
|
38 |
|
|
|
39 |
model = model.to(device)
|
40 |
#model = torch.compile(model)
|
41 |
|
|
|
152 |
|
153 |
# Decoding
|
154 |
start = time.perf_counter()
|
155 |
+
sample = sample_latent * DATA_NORMALIZATION['std'].view(1, -1, 1, 1) + DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)
|
156 |
|
157 |
# Use time.sleep(10) here since it's in a separate thread
|
158 |
#time.sleep(10)
|