Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
100405c
1
Parent(s):
b8ac450
- config_final_model.yaml +104 -0
- latent_stats.json +0 -0
- main.py +13 -9
config_final_model.yaml
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
save_path: saved_standard_challenging_context32_nocond_cont_cont_all_cont_eval
|
| 2 |
+
|
| 3 |
+
model:
|
| 4 |
+
base_learning_rate: 8.0e-05
|
| 5 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
| 6 |
+
params:
|
| 7 |
+
linear_start: 0.0015
|
| 8 |
+
linear_end: 0.0195
|
| 9 |
+
num_timesteps_cond: 1
|
| 10 |
+
log_every_t: 200
|
| 11 |
+
timesteps: 1000
|
| 12 |
+
first_stage_key: image
|
| 13 |
+
cond_stage_key: action_
|
| 14 |
+
scheduler_sampling_rate: 0.0
|
| 15 |
+
hybrid_key: c_concat
|
| 16 |
+
image_size: [64, 48]
|
| 17 |
+
channels: 3
|
| 18 |
+
cond_stage_trainable: false
|
| 19 |
+
conditioning_key: hybrid
|
| 20 |
+
monitor: val/loss_simple_ema
|
| 21 |
+
|
| 22 |
+
unet_config:
|
| 23 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
| 24 |
+
params:
|
| 25 |
+
image_size: [64, 48]
|
| 26 |
+
in_channels: 48
|
| 27 |
+
out_channels: 16
|
| 28 |
+
model_channels: 512
|
| 29 |
+
attention_resolutions: []
|
| 30 |
+
num_res_blocks: 2
|
| 31 |
+
channel_mult:
|
| 32 |
+
- 1
|
| 33 |
+
- 2
|
| 34 |
+
num_head_channels: 32
|
| 35 |
+
use_spatial_transformer: false
|
| 36 |
+
transformer_depth: 1
|
| 37 |
+
|
| 38 |
+
temporal_encoder_config:
|
| 39 |
+
target: ldm.modules.encoders.temporal_encoder.TemporalEncoder
|
| 40 |
+
params:
|
| 41 |
+
input_channels: 16
|
| 42 |
+
hidden_size: 4096
|
| 43 |
+
num_layers: 1
|
| 44 |
+
dropout: 0.1
|
| 45 |
+
output_channels: 32
|
| 46 |
+
output_height: 48
|
| 47 |
+
output_width: 64
|
| 48 |
+
|
| 49 |
+
first_stage_config:
|
| 50 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
| 51 |
+
params:
|
| 52 |
+
embed_dim: 16
|
| 53 |
+
monitor: val/rec_loss
|
| 54 |
+
ddconfig:
|
| 55 |
+
double_z: true
|
| 56 |
+
z_channels: 16
|
| 57 |
+
resolution: 256
|
| 58 |
+
in_channels: 3
|
| 59 |
+
out_ch: 3
|
| 60 |
+
ch: 128
|
| 61 |
+
ch_mult:
|
| 62 |
+
- 1
|
| 63 |
+
- 2
|
| 64 |
+
- 4
|
| 65 |
+
- 4
|
| 66 |
+
num_res_blocks: 2
|
| 67 |
+
attn_resolutions: []
|
| 68 |
+
dropout: 0.0
|
| 69 |
+
lossconfig:
|
| 70 |
+
target: torch.nn.Identity
|
| 71 |
+
|
| 72 |
+
cond_stage_config: __is_unconditional__
|
| 73 |
+
|
| 74 |
+
data:
|
| 75 |
+
target: data.data_processing.datasets.DataModule
|
| 76 |
+
params:
|
| 77 |
+
batch_size: 8
|
| 78 |
+
num_workers: 1
|
| 79 |
+
wrap: false
|
| 80 |
+
shuffle: True
|
| 81 |
+
drop_last: True
|
| 82 |
+
pin_memory: True
|
| 83 |
+
prefetch_factor: 2
|
| 84 |
+
persistent_workers: True
|
| 85 |
+
train:
|
| 86 |
+
target: data.data_processing.datasets.ActionsData
|
| 87 |
+
params:
|
| 88 |
+
data_csv_path: desktop_sequences_filtered_with_desktop_1.5k.challenging.train.target_frames.csv
|
| 89 |
+
normalization: standard
|
| 90 |
+
context_length: 32
|
| 91 |
+
#validation:
|
| 92 |
+
# target: data.data_processing.datasets.ActionsData
|
| 93 |
+
# params:
|
| 94 |
+
|
| 95 |
+
lightning:
|
| 96 |
+
trainer:
|
| 97 |
+
benchmark: False
|
| 98 |
+
max_epochs: 6400
|
| 99 |
+
limit_val_batches: 0
|
| 100 |
+
accelerator: gpu
|
| 101 |
+
gpus: 1
|
| 102 |
+
accumulate_grad_batches: 999999
|
| 103 |
+
gradient_clip_val: 1
|
| 104 |
+
checkpoint_callback: True
|
latent_stats.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
main.py
CHANGED
|
@@ -17,21 +17,25 @@ import concurrent.futures
|
|
| 17 |
|
| 18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
SCREEN_WIDTH = 512
|
| 21 |
SCREEN_HEIGHT = 384
|
| 22 |
NUM_SAMPLING_STEPS = 8
|
| 23 |
-
DATA_NORMALIZATION = {
|
| 24 |
-
'mean': -0.54,
|
| 25 |
-
'std': 6.78,
|
| 26 |
-
}
|
| 27 |
-
LATENT_DIMS = (4, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# Initialize the model at the start of your application
|
| 31 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
| 32 |
-
model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
|
|
|
|
| 33 |
|
| 34 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 35 |
model = model.to(device)
|
| 36 |
#model = torch.compile(model)
|
| 37 |
|
|
@@ -148,7 +152,7 @@ def _process_frame_sync(model, inputs):
|
|
| 148 |
|
| 149 |
# Decoding
|
| 150 |
start = time.perf_counter()
|
| 151 |
-
sample = sample_latent * DATA_NORMALIZATION['std'] + DATA_NORMALIZATION['mean']
|
| 152 |
|
| 153 |
# Use time.sleep(10) here since it's in a separate thread
|
| 154 |
#time.sleep(10)
|
|
|
|
| 17 |
|
| 18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
torch.backends.cudnn.allow_tf32 = True
|
| 20 |
+
|
| 21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
SCREEN_WIDTH = 512
|
| 26 |
SCREEN_HEIGHT = 384
|
| 27 |
NUM_SAMPLING_STEPS = 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
with open('latent_stats.json', 'r') as f:
|
| 30 |
+
latent_stats = json.load(f)
|
| 31 |
+
DATA_NORMALIZATION = {'mean': torch.tensor(latent_stats['mean']).to(device), 'std': torch.tensor(latent_stats['std']).to(device)}
|
| 32 |
+
LATENT_DIMS = latent_stats['latent_dims']
|
| 33 |
+
|
| 34 |
# Initialize the model at the start of your application
|
| 35 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
| 36 |
+
#model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
|
| 37 |
+
model = initialize_model("config_final_model.yaml", "yuntian-deng/computer-model")
|
| 38 |
|
|
|
|
| 39 |
model = model.to(device)
|
| 40 |
#model = torch.compile(model)
|
| 41 |
|
|
|
|
| 152 |
|
| 153 |
# Decoding
|
| 154 |
start = time.perf_counter()
|
| 155 |
+
sample = sample_latent * DATA_NORMALIZATION['std'].view(1, -1, 1, 1) + DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)
|
| 156 |
|
| 157 |
# Use time.sleep(10) here since it's in a separate thread
|
| 158 |
#time.sleep(10)
|