Spaces:
Runtime error
Runtime error
Commit
·
3026a03
1
Parent(s):
a677593
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
from ldm.util import instantiate_from_config
|
4 |
+
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import json
|
9 |
+
|
10 |
+
def load_model_from_config(config_path, model_name, device='cuda'):
|
11 |
+
# Load the config file
|
12 |
+
config = OmegaConf.load(config_path)
|
13 |
+
|
14 |
+
# Instantiate the model
|
15 |
+
model = instantiate_from_config(config.model)
|
16 |
+
|
17 |
+
# Download the model file from Hugging Face
|
18 |
+
model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors")
|
19 |
+
|
20 |
+
print(f"Loading model from {model_name}")
|
21 |
+
# Load the state dict
|
22 |
+
state_dict = torch.load(model_file, map_location='cpu')
|
23 |
+
model.load_state_dict(state_dict, strict=False)
|
24 |
+
|
25 |
+
model.to(device)
|
26 |
+
model.eval()
|
27 |
+
return model
|
28 |
+
|
29 |
+
def sample_frame(model: LatentDiffusion, prompt: str, image_sequence: torch.Tensor):
|
30 |
+
sampler = DDIMSampler(model)
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
u_dict = {'c_crossattn': "", 'c_concat': image_sequence}
|
34 |
+
uc = model.get_learned_conditioning(u_dict)
|
35 |
+
uc = model.enc_concat_seq(uc, u_dict, 'c_concat')
|
36 |
+
|
37 |
+
c_dict = {'c_crossattn': prompt, 'c_concat': image_sequence}
|
38 |
+
c = model.get_learned_conditioning(c_dict)
|
39 |
+
c = model.enc_concat_seq(c, c_dict, 'c_concat')
|
40 |
+
|
41 |
+
samples_ddim, _ = sampler.sample(S=200,
|
42 |
+
conditioning=c,
|
43 |
+
batch_size=1,
|
44 |
+
shape=[3, 64, 64],
|
45 |
+
verbose=False,
|
46 |
+
unconditional_guidance_scale=5.0,
|
47 |
+
unconditional_conditioning=uc,
|
48 |
+
eta=0)
|
49 |
+
|
50 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
51 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
52 |
+
|
53 |
+
return x_samples_ddim.squeeze(0).cpu().numpy()
|
54 |
+
|
55 |
+
# Global variables for model and device
|
56 |
+
model = None
|
57 |
+
device = None
|
58 |
+
|
59 |
+
def initialize_model(config_path, model_name):
|
60 |
+
global model, device
|
61 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
model = load_model_from_config(config_path, model_name, device)
|