Spaces:
Runtime error
Runtime error
Commit
·
5a39c97
1
Parent(s):
eea5d6f
Update main.py
Browse files
main.py
CHANGED
|
@@ -9,6 +9,7 @@ import io
|
|
| 9 |
import asyncio
|
| 10 |
from utils import initialize_model, sample_frame
|
| 11 |
import torch
|
|
|
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
@@ -64,6 +65,14 @@ def normalize_images(images, target_range=(-1, 1)):
|
|
| 64 |
else:
|
| 65 |
raise ValueError(f"Unsupported target range: {target_range}")
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
|
| 68 |
width, height = 256, 256
|
| 69 |
initial_images = load_initial_images(width, height)
|
|
@@ -107,14 +116,17 @@ def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List
|
|
| 107 |
new_frame = sample_frame(model, prompt, image_sequence_tensor)
|
| 108 |
|
| 109 |
# Convert the generated frame to the correct format
|
| 110 |
-
new_frame = (new_frame * 255).astype(np.uint8).transpose(1, 2, 0)
|
| 111 |
|
| 112 |
# Resize the frame to 256x256 if necessary
|
| 113 |
-
if new_frame.shape[:2] != (height, width):
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Draw the trace of previous actions
|
| 117 |
-
new_frame_with_trace = draw_trace(
|
| 118 |
|
| 119 |
return new_frame_with_trace
|
| 120 |
|
|
|
|
| 9 |
import asyncio
|
| 10 |
from utils import initialize_model, sample_frame
|
| 11 |
import torch
|
| 12 |
+
import os
|
| 13 |
|
| 14 |
app = FastAPI()
|
| 15 |
|
|
|
|
| 65 |
else:
|
| 66 |
raise ValueError(f"Unsupported target range: {target_range}")
|
| 67 |
|
| 68 |
+
def denormalize_image(image, source_range=(-1, 1)):
|
| 69 |
+
if source_range == (-1, 1):
|
| 70 |
+
return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8)
|
| 71 |
+
elif source_range == (0, 1):
|
| 72 |
+
return (image * 255).clip(0, 255).astype(np.uint8)
|
| 73 |
+
else:
|
| 74 |
+
raise ValueError(f"Unsupported source range: {source_range}")
|
| 75 |
+
|
| 76 |
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
|
| 77 |
width, height = 256, 256
|
| 78 |
initial_images = load_initial_images(width, height)
|
|
|
|
| 116 |
new_frame = sample_frame(model, prompt, image_sequence_tensor)
|
| 117 |
|
| 118 |
# Convert the generated frame to the correct format
|
| 119 |
+
#new_frame = (new_frame * 255).astype(np.uint8).transpose(1, 2, 0)
|
| 120 |
|
| 121 |
# Resize the frame to 256x256 if necessary
|
| 122 |
+
#if new_frame.shape[:2] != (height, width):
|
| 123 |
+
# new_frame = np.array(Image.fromarray(new_frame).resize((width, height)))
|
| 124 |
+
|
| 125 |
+
new_frame_denormalized = denormalize_image(new_frame.cpu().numpy(), source_range=(-1, 1))
|
| 126 |
+
|
| 127 |
|
| 128 |
# Draw the trace of previous actions
|
| 129 |
+
new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions)
|
| 130 |
|
| 131 |
return new_frame_with_trace
|
| 132 |
|