Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
837289b
1
Parent(s):
f2aec00
- config_rnn_measure_latency.yaml +108 -0
- main.py +1 -1
- utils.py +7 -7
config_rnn_measure_latency.yaml
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
save_path: saved_standard_challenging_context32_nocond_cont_cont_all_cont_eval
|
2 |
+
|
3 |
+
model:
|
4 |
+
base_learning_rate: 8.0e-05
|
5 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
6 |
+
params:
|
7 |
+
linear_start: 0.0015
|
8 |
+
linear_end: 0.0195
|
9 |
+
num_timesteps_cond: 1
|
10 |
+
log_every_t: 200
|
11 |
+
timesteps: 1000
|
12 |
+
first_stage_key: image
|
13 |
+
cond_stage_key: action_
|
14 |
+
scheduler_sampling_rate: 0.0
|
15 |
+
hybrid_key: c_concat
|
16 |
+
image_size: [64, 48]
|
17 |
+
channels: 3
|
18 |
+
cond_stage_trainable: false
|
19 |
+
conditioning_key: hybrid
|
20 |
+
monitor: val/loss_simple_ema
|
21 |
+
|
22 |
+
unet_config:
|
23 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
24 |
+
params:
|
25 |
+
image_size: [64, 48]
|
26 |
+
in_channels: 8
|
27 |
+
out_channels: 4
|
28 |
+
model_channels: 192
|
29 |
+
attention_resolutions:
|
30 |
+
- 8
|
31 |
+
- 4
|
32 |
+
- 2
|
33 |
+
num_res_blocks: 2
|
34 |
+
channel_mult:
|
35 |
+
- 1
|
36 |
+
- 2
|
37 |
+
- 3
|
38 |
+
num_head_channels: 32
|
39 |
+
use_spatial_transformer: false
|
40 |
+
transformer_depth: 1
|
41 |
+
|
42 |
+
temporal_encoder_config:
|
43 |
+
target: ldm.modules.encoders.temporal_encoder.TemporalEncoder
|
44 |
+
params:
|
45 |
+
input_channels: 6
|
46 |
+
hidden_size: 1024
|
47 |
+
num_layers: 1
|
48 |
+
dropout: 0.1
|
49 |
+
output_channels: 4
|
50 |
+
output_height: 48
|
51 |
+
output_width: 64
|
52 |
+
|
53 |
+
first_stage_config:
|
54 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
55 |
+
params:
|
56 |
+
embed_dim: 4
|
57 |
+
monitor: val/rec_loss
|
58 |
+
ddconfig:
|
59 |
+
double_z: true
|
60 |
+
z_channels: 4
|
61 |
+
resolution: 256
|
62 |
+
in_channels: 3
|
63 |
+
out_ch: 3
|
64 |
+
ch: 128
|
65 |
+
ch_mult:
|
66 |
+
- 1
|
67 |
+
- 2
|
68 |
+
- 4
|
69 |
+
- 4
|
70 |
+
num_res_blocks: 2
|
71 |
+
attn_resolutions: []
|
72 |
+
dropout: 0.0
|
73 |
+
lossconfig:
|
74 |
+
target: torch.nn.Identity
|
75 |
+
|
76 |
+
cond_stage_config: __is_unconditional__
|
77 |
+
|
78 |
+
data:
|
79 |
+
target: data.data_processing.datasets.DataModule
|
80 |
+
params:
|
81 |
+
batch_size: 8
|
82 |
+
num_workers: 1
|
83 |
+
wrap: false
|
84 |
+
shuffle: True
|
85 |
+
drop_last: True
|
86 |
+
pin_memory: True
|
87 |
+
prefetch_factor: 2
|
88 |
+
persistent_workers: True
|
89 |
+
train:
|
90 |
+
target: data.data_processing.datasets.ActionsData
|
91 |
+
params:
|
92 |
+
data_csv_path: desktop_sequences_filtered_with_desktop_1.5k.challenging.train.target_frames.csv
|
93 |
+
normalization: standard
|
94 |
+
context_length: 32
|
95 |
+
#validation:
|
96 |
+
# target: data.data_processing.datasets.ActionsData
|
97 |
+
# params:
|
98 |
+
|
99 |
+
lightning:
|
100 |
+
trainer:
|
101 |
+
benchmark: False
|
102 |
+
max_epochs: 6400
|
103 |
+
limit_val_batches: 0
|
104 |
+
accelerator: gpu
|
105 |
+
gpus: 1
|
106 |
+
accumulate_grad_batches: 999999
|
107 |
+
gradient_clip_val: 1
|
108 |
+
checkpoint_callback: True
|
main.py
CHANGED
@@ -27,7 +27,7 @@ LATENT_DIMS = (4, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
|
|
27 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
28 |
# Initialize the model at the start of your application
|
29 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
30 |
-
model = initialize_model("
|
31 |
|
32 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
model = model.to(device)
|
|
|
27 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
28 |
# Initialize the model at the start of your application
|
29 |
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
|
30 |
+
model = initialize_model("config_rnn_measure_latency.yaml", "yuntian-deng/computer-model")
|
31 |
|
32 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
model = model.to(device)
|
utils.py
CHANGED
@@ -10,7 +10,7 @@ import os
|
|
10 |
import time
|
11 |
DEBUG = False
|
12 |
|
13 |
-
def load_model_from_config(config_path, model_name, device='cuda'):
|
14 |
# Load the config file
|
15 |
config = OmegaConf.load(config_path)
|
16 |
|
@@ -18,12 +18,12 @@ def load_model_from_config(config_path, model_name, device='cuda'):
|
|
18 |
model = instantiate_from_config(config.model)
|
19 |
|
20 |
# Download the model file from Hugging Face
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
model.to(device)
|
29 |
model.eval()
|
|
|
10 |
import time
|
11 |
DEBUG = False
|
12 |
|
13 |
+
def load_model_from_config(config_path, model_name, device='cuda', load=False):
|
14 |
# Load the config file
|
15 |
config = OmegaConf.load(config_path)
|
16 |
|
|
|
18 |
model = instantiate_from_config(config.model)
|
19 |
|
20 |
# Download the model file from Hugging Face
|
21 |
+
if load:
|
22 |
+
model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors", token=os.getenv('HF_TOKEN'))
|
23 |
+
print(f"Loading model from {model_name}")
|
24 |
+
# Load the state dict
|
25 |
+
state_dict = torch.load(model_file, map_location='cpu')
|
26 |
+
model.load_state_dict(state_dict, strict=True)
|
27 |
|
28 |
model.to(device)
|
29 |
model.eval()
|