Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
ab7919c
1
Parent(s):
9612f89
- online_data_generation.py +270 -115
online_data_generation.py
CHANGED
@@ -10,6 +10,17 @@ import numpy as np
|
|
10 |
import subprocess
|
11 |
from datetime import datetime
|
12 |
from typing import List, Dict, Any, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Import the existing functions
|
15 |
from data.data_collection.synthetic_script_compute_canada import process_trajectory, initialize_clean_state
|
@@ -28,10 +39,18 @@ logger = logging.getLogger(__name__)
|
|
28 |
# Define constants
|
29 |
DB_FILE = "trajectory_processor.db"
|
30 |
FRAMES_DIR = "interaction_logs"
|
|
|
|
|
31 |
SCREEN_WIDTH = 512
|
32 |
SCREEN_HEIGHT = 384
|
33 |
MEMORY_LIMIT = "2g"
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def initialize_database():
|
36 |
"""Initialize the SQLite database if it doesn't exist."""
|
37 |
conn = sqlite3.connect(DB_FILE)
|
@@ -142,133 +161,269 @@ def load_trajectory(log_file):
|
|
142 |
|
143 |
|
144 |
def process_session_file(log_file, clean_state):
|
145 |
-
"""
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
# Ensure output directory exists
|
153 |
-
os.makedirs("generated_videos", exist_ok=True)
|
154 |
-
|
155 |
-
# Get session details
|
156 |
-
trajectory = load_trajectory(log_file)
|
157 |
-
if not trajectory:
|
158 |
-
logger.error(f"Empty trajectory for {log_file}, skipping")
|
159 |
-
conn.close()
|
160 |
-
return []
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
reset_indices.append(i)
|
171 |
-
if entry.get("is_eos", False):
|
172 |
-
has_eos = True
|
173 |
-
|
174 |
-
# If no resets and no EOS, this is incomplete - skip
|
175 |
-
if not reset_indices and not has_eos:
|
176 |
-
logger.warning(f"Session {log_file} has no resets and no EOS, may be incomplete")
|
177 |
-
conn.close()
|
178 |
-
return []
|
179 |
-
|
180 |
-
# Split trajectory at reset points
|
181 |
-
sub_trajectories = []
|
182 |
-
start_idx = 0
|
183 |
-
|
184 |
-
# Add all segments between resets
|
185 |
-
for reset_idx in reset_indices:
|
186 |
-
if reset_idx > start_idx: # Only add non-empty segments
|
187 |
-
sub_trajectories.append(trajectory[start_idx:reset_idx])
|
188 |
-
start_idx = reset_idx + 1 # Start new segment after the reset
|
189 |
-
|
190 |
-
# Add the final segment if it's not empty
|
191 |
-
if start_idx < len(trajectory):
|
192 |
-
sub_trajectories.append(trajectory[start_idx:])
|
193 |
-
|
194 |
-
# Process each sub-trajectory
|
195 |
-
processed_ids = []
|
196 |
-
|
197 |
-
for i, sub_traj in enumerate(sub_trajectories):
|
198 |
-
# Skip segments with no interaction data (just control messages)
|
199 |
-
if not any(not entry.get("is_reset", False) and not entry.get("is_eos", False) for entry in sub_traj):
|
200 |
-
continue
|
201 |
-
|
202 |
-
# Get the next ID for this sub-trajectory
|
203 |
-
cursor.execute("SELECT value FROM config WHERE key = 'next_id'")
|
204 |
-
next_id = int(cursor.fetchone()[0])
|
205 |
|
206 |
-
|
207 |
-
start_time = sub_traj[0]["timestamp"]
|
208 |
-
end_time = sub_traj[-1]["timestamp"]
|
209 |
|
210 |
-
#
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
start_time,
|
220 |
-
end_time
|
221 |
-
)
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
#
|
231 |
-
|
|
|
232 |
|
233 |
-
#
|
234 |
-
|
235 |
-
|
236 |
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
datetime.now().isoformat(), next_id)
|
245 |
)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
conn.commit()
|
250 |
-
|
251 |
-
processed_ids.append(next_id)
|
252 |
-
logger.info(f"Successfully processed segment {i+1}/{len(sub_trajectories)} from {log_file}")
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
(
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
|
274 |
def format_trajectory_for_processing(trajectory):
|
|
|
10 |
import subprocess
|
11 |
from datetime import datetime
|
12 |
from typing import List, Dict, Any, Tuple
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from computer.util import load_model_from_config
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
+
import torch
|
18 |
+
from einops import rearrange
|
19 |
+
import webdataset as wds
|
20 |
+
import pandas as pd
|
21 |
+
import ast
|
22 |
+
import pickle
|
23 |
+
from moviepy.editor import VideoFileClip
|
24 |
|
25 |
# Import the existing functions
|
26 |
from data.data_collection.synthetic_script_compute_canada import process_trajectory, initialize_clean_state
|
|
|
39 |
# Define constants
|
40 |
DB_FILE = "trajectory_processor.db"
|
41 |
FRAMES_DIR = "interaction_logs"
|
42 |
+
OUTPUT_DIR = 'train_dataset_encoded_online'
|
43 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
44 |
SCREEN_WIDTH = 512
|
45 |
SCREEN_HEIGHT = 384
|
46 |
MEMORY_LIMIT = "2g"
|
47 |
|
48 |
+
# load autoencoder
|
49 |
+
config = OmegaConf.load('../computer/autoencoder/config_kl4_lr4.5e6_load_acc1_512_384_mar10_keyboard_init_16_contmar15_acc1.yaml')
|
50 |
+
autoencoder = load_model_from_config(config, '../computer/autoencoder/saved_kl4_bsz8_acc8_lr4.5e6_load_acc1_512_384_mar10_keyboard_init_16_cont_mar15_acc1_cont_1e6_cont_2e7_cont/model-2076000.ckpt')
|
51 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
52 |
+
autoencoder = autoencoder.to(device)
|
53 |
+
|
54 |
def initialize_database():
|
55 |
"""Initialize the SQLite database if it doesn't exist."""
|
56 |
conn = sqlite3.connect(DB_FILE)
|
|
|
161 |
|
162 |
|
163 |
def process_session_file(log_file, clean_state):
|
164 |
+
"""Process a session file, splitting into multiple trajectories at reset points."""
|
165 |
+
conn = None
|
166 |
+
try:
|
167 |
+
conn = sqlite3.connect(DB_FILE)
|
168 |
+
conn.execute("BEGIN TRANSACTION") # Explicit transaction
|
169 |
+
cursor = conn.cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# Ensure output directory exists
|
172 |
+
os.makedirs("generated_videos", exist_ok=True)
|
173 |
+
|
174 |
+
# Get session details
|
175 |
+
trajectory = load_trajectory(log_file)
|
176 |
+
if not trajectory:
|
177 |
+
logger.error(f"Empty trajectory for {log_file}, skipping")
|
178 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
client_id = trajectory[0].get("client_id", "unknown")
|
|
|
|
|
181 |
|
182 |
+
# Find all reset points and EOS
|
183 |
+
reset_indices = []
|
184 |
+
has_eos = False
|
185 |
|
186 |
+
for i, entry in enumerate(trajectory):
|
187 |
+
if entry.get("is_reset", False):
|
188 |
+
reset_indices.append(i)
|
189 |
+
if entry.get("is_eos", False):
|
190 |
+
has_eos = True
|
|
|
|
|
|
|
191 |
|
192 |
+
# If no resets and no EOS, this is incomplete - skip
|
193 |
+
if not reset_indices and not has_eos:
|
194 |
+
logger.warning(f"Session {log_file} has no resets and no EOS, may be incomplete")
|
195 |
+
return []
|
196 |
+
|
197 |
+
# Split trajectory at reset points
|
198 |
+
sub_trajectories = []
|
199 |
+
start_idx = 0
|
200 |
+
|
201 |
+
# Add all segments between resets
|
202 |
+
for reset_idx in reset_indices:
|
203 |
+
if reset_idx > start_idx: # Only add non-empty segments
|
204 |
+
sub_trajectories.append(trajectory[start_idx:reset_idx])
|
205 |
+
start_idx = reset_idx + 1 # Start new segment after the reset
|
206 |
+
|
207 |
+
# Add the final segment if it's not empty
|
208 |
+
if start_idx < len(trajectory):
|
209 |
+
sub_trajectories.append(trajectory[start_idx:])
|
210 |
+
|
211 |
+
# Process each sub-trajectory
|
212 |
+
processed_ids = []
|
213 |
+
|
214 |
+
for i, sub_traj in enumerate(sub_trajectories):
|
215 |
+
# Skip segments with no interaction data (just control messages)
|
216 |
+
if not any(not entry.get("is_reset", False) and not entry.get("is_eos", False) for entry in sub_traj):
|
217 |
+
continue
|
218 |
|
219 |
+
# Get the next ID for this sub-trajectory
|
220 |
+
cursor.execute("SELECT value FROM config WHERE key = 'next_id'")
|
221 |
+
next_id = int(cursor.fetchone()[0])
|
222 |
|
223 |
+
# Find timestamps for this segment
|
224 |
+
start_time = sub_traj[0]["timestamp"]
|
225 |
+
end_time = sub_traj[-1]["timestamp"]
|
226 |
|
227 |
+
# STEP 1: Generate a video from the original frames
|
228 |
+
segment_label = f"segment_{i+1}_of_{len(sub_trajectories)}"
|
229 |
+
video_path = os.path.join("generated_videos", f"trajectory_{next_id}_{segment_label}.mp4")
|
230 |
|
231 |
+
# Generate video from original frames for comparison
|
232 |
+
success, frame_count = generate_comparison_video(
|
233 |
+
client_id,
|
234 |
+
sub_traj,
|
235 |
+
video_path,
|
236 |
+
start_time,
|
237 |
+
end_time
|
|
|
238 |
)
|
239 |
|
240 |
+
if not success:
|
241 |
+
logger.warning(f"Failed to generate comparison video for segment {i+1}, but continuing with processing")
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
# STEP 2: Process with Docker for training data generation
|
244 |
+
try:
|
245 |
+
logger.info(f"Processing segment {i+1}/{len(sub_trajectories)} from {log_file} as trajectory {next_id}")
|
246 |
+
|
247 |
+
# Format the trajectory as needed by process_trajectory function
|
248 |
+
formatted_trajectory = format_trajectory_for_processing(sub_traj)
|
249 |
+
record_num = next_id
|
250 |
+
|
251 |
+
# Call the external process_trajectory function
|
252 |
+
args = (record_num, formatted_trajectory)
|
253 |
+
process_trajectory(args, SCREEN_WIDTH, SCREEN_HEIGHT, clean_state, MEMORY_LIMIT)
|
254 |
+
|
255 |
+
# Prepare training data format
|
256 |
+
video_file = f'raw_data/raw_data/videos/record_{record_num}.mp4'
|
257 |
+
action_file = f'raw_data/raw_data/actions/record_{record_num}.csv'
|
258 |
+
mouse_data = pd.read_csv(action_file)
|
259 |
+
mapping_dict = {}
|
260 |
+
target_data = []
|
261 |
+
# remove the existing tar file if exists
|
262 |
+
if os.path.exists(os.path.join(OUTPUT_DIR, f'record_{record_num}.tar')):
|
263 |
+
logger.info(f"Removing existing tar file {os.path.join(OUTPUT_DIR, f'record_{record_num}.tar')}")
|
264 |
+
os.remove(os.path.join(OUTPUT_DIR, f'record_{record_num}.tar'))
|
265 |
+
sink = wds.TarWriter(os.path.join(OUTPUT_DIR, f'record_{record_num}.tar'))
|
266 |
+
with VideoFileClip(video_file) as video:
|
267 |
+
fps = video.fps
|
268 |
+
assert fps == 15, f"Expected 15 FPS, got {fps}"
|
269 |
+
duration = video.duration
|
270 |
+
down_keys = set([])
|
271 |
+
for image_num in range(int(fps*duration)):
|
272 |
+
action_row = mouse_data.iloc[image_num]
|
273 |
+
x = int(action_row['X'])
|
274 |
+
y = int(action_row['Y'])
|
275 |
+
left_click = True if action_row['Left Click'] == 1 else False
|
276 |
+
right_click = True if action_row['Right Click'] == 1 else False
|
277 |
+
key_events = ast.literal_eval(action_row['Key Events'])
|
278 |
+
for key_state, key in key_events:
|
279 |
+
if key_state == "keydown":
|
280 |
+
down_keys.add(key)
|
281 |
+
elif key_state == "keyup":
|
282 |
+
down_keys.remove(key)
|
283 |
+
else:
|
284 |
+
raise ValueError(f"Unknown key event type: {key_state}")
|
285 |
+
mapping_dict[(record_num, image_num)] = (x, y, left_click, right_click, list(down_keys))
|
286 |
+
target_data.append((record_num, image_num))
|
287 |
+
frame = video.get_frame(image_num / fps)
|
288 |
+
|
289 |
+
# Normalize to [-1, 1]
|
290 |
+
image_array = (frame / 127.5 - 1.0).astype(np.float32)
|
291 |
+
|
292 |
+
# Convert to torch tensor
|
293 |
+
images_tensor = torch.tensor(image_array).unsqueeze(0)
|
294 |
+
images_tensor = rearrange(images_tensor, 'b h w c -> b c h w')
|
295 |
+
|
296 |
+
# Move to device for inference
|
297 |
+
images_tensor = images_tensor.to(device)
|
298 |
+
|
299 |
+
# Encode images
|
300 |
+
posterior = autoencoder.encode(images_tensor)
|
301 |
+
latents = posterior.sample() # Sample from the posterior
|
302 |
+
|
303 |
+
# Move back to CPU for saving
|
304 |
+
latents = latents.cpu()
|
305 |
+
|
306 |
+
# Save each latent to the tar file
|
307 |
+
latent = latents[0]
|
308 |
+
key = str(image_num)
|
309 |
+
|
310 |
+
# Convert latent to bytes
|
311 |
+
latent_bytes = io.BytesIO()
|
312 |
+
np.save(latent_bytes, latent.numpy())
|
313 |
+
latent_bytes.seek(0)
|
314 |
+
|
315 |
+
# Write to tar
|
316 |
+
sample = {
|
317 |
+
"__key__": key,
|
318 |
+
"npy": latent_bytes.getvalue(),
|
319 |
+
}
|
320 |
+
sink.write(sample)
|
321 |
+
debug = True
|
322 |
+
# Debug first batch if requested
|
323 |
+
if debug:
|
324 |
+
debug_dir = os.path.join(OUTPUT_DIR, 'debug')
|
325 |
+
os.makedirs(debug_dir, exist_ok=True)
|
326 |
+
|
327 |
+
# Decode latents back to images
|
328 |
+
reconstructions = autoencoder.decode(latents.to(device))
|
329 |
+
|
330 |
+
# Save original and reconstructed images side by side
|
331 |
+
for idx, (orig, recon) in enumerate(zip(images_tensor, reconstructions)):
|
332 |
+
# Convert to numpy and move to CPU
|
333 |
+
orig = orig.cpu().numpy()
|
334 |
+
recon = recon.cpu().numpy()
|
335 |
+
|
336 |
+
# Denormalize from [-1,1] to [0,255]
|
337 |
+
orig = (orig + 1.0) * 127.5
|
338 |
+
recon = (recon + 1.0) * 127.5
|
339 |
+
|
340 |
+
# Clip values to valid range
|
341 |
+
orig = np.clip(orig, 0, 255).astype(np.uint8)
|
342 |
+
recon = np.clip(recon, 0, 255).astype(np.uint8)
|
343 |
+
|
344 |
+
# Rearrange from CHW to HWC
|
345 |
+
orig = np.transpose(orig, (1,2,0))
|
346 |
+
recon = np.transpose(recon, (1,2,0))
|
347 |
+
|
348 |
+
# Create side-by-side comparison
|
349 |
+
comparison = np.concatenate([orig, recon], axis=1)
|
350 |
+
|
351 |
+
# Save comparison image
|
352 |
+
Image.fromarray(comparison).save(
|
353 |
+
os.path.join(debug_dir, f'debug_{video_file}_{idx}_{keys[idx]}.png')
|
354 |
+
)
|
355 |
+
print(f"\nDebug visualizations saved to {debug_dir}")
|
356 |
+
sink.close()
|
357 |
+
# merge with existing mapping_dict if exists, otherwise create new one
|
358 |
+
if os.path.exists(os.path.join(OUTPUT_DIR, 'image_action_mapping_with_key_states.pkl')):
|
359 |
+
with open(os.path.join(OUTPUT_DIR, 'image_action_mapping_with_key_states.pkl'), 'rb') as f:
|
360 |
+
existing_mapping_dict = pickle.load(f)
|
361 |
+
for key, value in existing_mapping_dict.items():
|
362 |
+
if key not in mapping_dict:
|
363 |
+
mapping_dict[key] = value
|
364 |
+
# save the mapping_dict in an atomic way
|
365 |
+
temp_path = os.path.join(OUTPUT_DIR, 'image_action_mapping_with_key_states.pkl.temp')
|
366 |
+
with open(temp_path, 'wb') as f:
|
367 |
+
pickle.dump(mapping_dict, f)
|
368 |
+
os.rename(temp_path, os.path.join(OUTPUT_DIR, 'image_action_mapping_with_key_states.pkl'))
|
369 |
+
|
370 |
+
# merge with existing target_data if exists, otherwise create new one
|
371 |
+
target_data = pd.DataFrame(target_data, columns=['record_num', 'image_num'])
|
372 |
+
if os.path.exists(os.path.join(OUTPUT_DIR, 'train_dataset.target_frames.csv')):
|
373 |
+
existing_target_data = pd.read_csv(os.path.join(OUTPUT_DIR, 'train_dataset.target_frames.csv'))
|
374 |
+
target_data = pd.concat([existing_target_data, target_data])
|
375 |
+
# deduplicate
|
376 |
+
target_data = target_data.drop_duplicates()
|
377 |
+
# save the target_data in an atomic way
|
378 |
+
temp_path = os.path.join(OUTPUT_DIR, 'train_dataset.target_frames.csv.temp')
|
379 |
+
target_data.to_csv(temp_path, index=False)
|
380 |
+
os.rename(temp_path, os.path.join(OUTPUT_DIR, 'train_dataset.target_frames.csv'))
|
381 |
+
|
382 |
+
|
383 |
+
# Mark this segment as processed
|
384 |
+
cursor.execute(
|
385 |
+
"""INSERT INTO processed_segments
|
386 |
+
(log_file, client_id, segment_index, start_time, end_time,
|
387 |
+
processed_time, trajectory_id)
|
388 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)""",
|
389 |
+
(log_file, client_id, i, start_time, end_time,
|
390 |
+
datetime.now().isoformat(), next_id)
|
391 |
+
)
|
392 |
+
|
393 |
+
# Increment the next ID
|
394 |
+
cursor.execute("UPDATE config SET value = ? WHERE key = 'next_id'", (str(next_id + 1),))
|
395 |
+
conn.commit()
|
396 |
+
|
397 |
+
processed_ids.append(next_id)
|
398 |
+
logger.info(f"Successfully processed segment {i+1}/{len(sub_trajectories)} from {log_file}")
|
399 |
+
|
400 |
+
except Exception as e:
|
401 |
+
logger.error(f"Failed to process segment {i+1}/{len(sub_trajectories)} from {log_file}: {e}")
|
402 |
+
continue
|
403 |
+
|
404 |
+
# Mark the entire session as processed only if at least one segment succeeded
|
405 |
+
if processed_ids:
|
406 |
+
try:
|
407 |
+
cursor.execute(
|
408 |
+
"INSERT INTO processed_sessions (log_file, client_id, processed_time) VALUES (?, ?, ?)",
|
409 |
+
(log_file, client_id, datetime.now().isoformat())
|
410 |
+
)
|
411 |
+
conn.commit()
|
412 |
+
except sqlite3.IntegrityError:
|
413 |
+
# This can happen if we're re-processing a file that had some segments fail
|
414 |
+
pass
|
415 |
+
|
416 |
+
# Commit only at the end if everything succeeds
|
417 |
+
conn.commit()
|
418 |
+
return processed_ids
|
419 |
+
except Exception as e:
|
420 |
+
logger.error(f"Error processing session {log_file}: {e}")
|
421 |
+
if conn:
|
422 |
+
conn.rollback() # Roll back on error
|
423 |
+
return []
|
424 |
+
finally:
|
425 |
+
if conn:
|
426 |
+
conn.close() # Always close connection
|
427 |
|
428 |
|
429 |
def format_trajectory_for_processing(trajectory):
|