Spaces:
Runtime error
Runtime error
da03
commited on
Commit
·
dfecf95
1
Parent(s):
03af1a4
main.py
CHANGED
@@ -22,6 +22,7 @@ torch.backends.cudnn.allow_tf32 = True
|
|
22 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
|
24 |
|
|
|
25 |
|
26 |
SCREEN_WIDTH = 512
|
27 |
SCREEN_HEIGHT = 384
|
@@ -113,7 +114,6 @@ def prepare_model_inputs(
|
|
113 |
|
114 |
if hidden_states is not None:
|
115 |
inputs['hidden_states'] = hidden_states
|
116 |
-
DEBUG_MODE = True
|
117 |
if DEBUG_MODE:
|
118 |
print ('DEBUG MODE, REMOVING INPUTS')
|
119 |
if 'hidden_states' in inputs:
|
@@ -245,6 +245,9 @@ async def websocket_endpoint(websocket: WebSocket):
|
|
245 |
inputs = prepare_model_inputs(previous_frame, hidden_states, x, y, is_right_click, is_left_click, list(keys_down), stoi, itos, frame_num)
|
246 |
print(f"[{time.perf_counter():.3f}] Starting model inference...")
|
247 |
previous_frame, sample_img, hidden_states, timing_info = await process_frame(model, inputs)
|
|
|
|
|
|
|
248 |
timing_info['full_frame'] = time.perf_counter() - process_start_time
|
249 |
|
250 |
print(f"[{time.perf_counter():.3f}] Model inference complete. Queue size now: {input_queue.qsize()}")
|
|
|
22 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
|
24 |
|
25 |
+
DEBUG_MODE = True
|
26 |
|
27 |
SCREEN_WIDTH = 512
|
28 |
SCREEN_HEIGHT = 384
|
|
|
114 |
|
115 |
if hidden_states is not None:
|
116 |
inputs['hidden_states'] = hidden_states
|
|
|
117 |
if DEBUG_MODE:
|
118 |
print ('DEBUG MODE, REMOVING INPUTS')
|
119 |
if 'hidden_states' in inputs:
|
|
|
245 |
inputs = prepare_model_inputs(previous_frame, hidden_states, x, y, is_right_click, is_left_click, list(keys_down), stoi, itos, frame_num)
|
246 |
print(f"[{time.perf_counter():.3f}] Starting model inference...")
|
247 |
previous_frame, sample_img, hidden_states, timing_info = await process_frame(model, inputs)
|
248 |
+
if DEBUG_MODE:
|
249 |
+
print (f"DEBUG MODE, REMOVING HIDDEN STATES")
|
250 |
+
previous_frame = padding_image
|
251 |
timing_info['full_frame'] = time.perf_counter() - process_start_time
|
252 |
|
253 |
print(f"[{time.perf_counter():.3f}] Model inference complete. Queue size now: {input_queue.qsize()}")
|