from fastapi import FastAPI, WebSocket, WebSocketDisconnect from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from typing import List, Tuple import numpy as np from PIL import Image, ImageDraw import base64 import io import asyncio from utils import initialize_model, sample_frame import torch import os import time DEBUG = False DEBUG_TEACHER_FORCING = False app = FastAPI() # Mount the static directory to serve HTML, JavaScript, and CSS files app.mount("/static", StaticFiles(directory="static"), name="static") # Add this at the top with other global variables all_click_positions = [] # Store all historical click positions def parse_action_string(action_str): """Convert formatted action string to x, y coordinates Args: action_str: String like 'N N N N N : N N N N N' or '+ 0 2 1 3 : + 0 3 8 3' Returns: tuple: (x, y) coordinates or None if action is padding """ action_type = action_str[0] action_str = action_str[1:].strip() if 'N' in action_str: return (None, None, None) # Split into x and y parts action_str = action_str.replace(' ', '') x_part, y_part = action_str.split(':') # Parse x: remove sign, join digits, convert to int, apply sign x = int(x_part) # Parse y: remove sign, join digits, convert to int, apply sign y = int(y_part) return x, y, action_type def create_position_and_click_map(pos,action_type, image_height=48, image_width=64, original_width=512, original_height=384): """Convert cursor position to a binary position map Args: x, y: Original cursor positions image_size: Size of the output position map (square) original_width: Original screen width (1024) original_height: Original screen height (640) Returns: torch.Tensor: Binary position map of shape (1, image_size, image_size) """ x, y = pos if x is None: return torch.zeros((1, image_height, image_width)), torch.zeros((1, image_height, image_width)), None, None # Scale the positions to new size #x_scaled = int((x / original_width) * image_size) #y_scaled = int((y / original_height) * image_size) #screen_width, screen_height = 512, 384 #video_width, video_height = 512, 384 #x_scaled = x - (screen_width / 2 - video_width / 2) #y_scaled = y - (screen_height / 2 - video_height / 2) x_scaled = int(x / original_width * image_width) y_scaled = int(y / original_height * image_height) # Clamp values to ensure they're within bounds x_scaled = max(0, min(x_scaled, image_width - 1)) y_scaled = max(0, min(y_scaled, image_height - 1)) # Create binary position map pos_map = torch.zeros((1, image_height, image_width)) pos_map[0, y_scaled, x_scaled] = 1.0 leftclick_map = torch.zeros((1, image_height, image_width)) if action_type == 'L': print ('left click', x_scaled, y_scaled) #print ('skipped') if True: leftclick_map[0, y_scaled, x_scaled] = 1.0 return pos_map, leftclick_map, x_scaled, y_scaled # Serve the index.html file at the root URL @app.get("/") async def get(): return HTMLResponse(open("static/index.html").read()) def generate_random_image(width: int, height: int) -> np.ndarray: return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]], x_scaled=-1, y_scaled=-1) -> np.ndarray: pil_image = Image.fromarray(image) draw = ImageDraw.Draw(pil_image) # Draw all historical click positions for click_x, click_y in all_click_positions: x_draw = click_x # Scale factor for display y_draw = click_y # Draw historical clicks as red circles draw.ellipse([x_draw-4, y_draw-4, x_draw+4, y_draw+4], fill=(255, 0, 0)) # Draw current trace prev_x, prev_y = None, None for i, (action_type, position) in enumerate(previous_actions): x, y = position if x == 0 and y == 0: continue x_draw = x y_draw = y # Draw movement positions as blue dots draw.ellipse([x_draw-2, y_draw-2, x_draw+2, y_draw+2], fill=(0, 0, 255)) # Draw connecting lines if prev_x is not None: draw.line([prev_x, prev_y, x_draw, y_draw], fill=(0, 255, 0), width=1) prev_x, prev_y = x_draw, y_draw # Draw current position if x_scaled >= 0 and y_scaled >= 0: x_current = x_scaled * 8 y_current = y_scaled * 8 #if not DEBUG_TEACHER_FORCING: # x_current = x_current *8 # y_current = y_current *8 print ('x_current, y_current', x_current, y_current) draw.ellipse([x_current-3, y_current-3, x_current+3, y_current+3], fill=(0, 255, 0)) else: assert False return np.array(pil_image) # Initialize the model at the start of your application #model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model") model = initialize_model("standard_challenging_context32_nocond_all.yaml", "yuntian-deng/computer-model") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) def load_initial_images(width, height): initial_images = [] if DEBUG_TEACHER_FORCING: # Load the previous 7 frames for image_81 for i in range(117-7, 117): # Load images 74-80 img = Image.open(f"record_10003/image_{i}.png")#.resize((width, height)) initial_images.append(np.array(img)) else: #assert False for i in range(32): initial_images.append(np.zeros((height, width, 3), dtype=np.uint8)) return initial_images def normalize_images(images, target_range=(-1, 1)): images = np.stack(images).astype(np.float32) if target_range == (-1, 1): return images / 127.5 - 1 elif target_range == (0, 1): return images / 255.0 else: raise ValueError(f"Unsupported target range: {target_range}") def normalize_image(image, target_range=(-1, 1)): image = image.astype(np.float32) if target_range == (-1, 1): return image / 127.5 - 1 elif target_range == (0, 1): return image / 255.0 else: raise ValueError(f"Unsupported target range: {target_range}") def denormalize_image(image, source_range=(-1, 1)): if source_range == (-1, 1): return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8) elif source_range == (0, 1): return (image * 255).clip(0, 255).astype(np.uint8) else: raise ValueError(f"Unsupported source range: {source_range}") def format_action(action_str, is_padding=False, is_leftclick=False): if is_padding: return "N N N N N N : N N N N N" # Split the x~y coordinates x, y = map(int, action_str.split('~')) prefix = 'N' if is_leftclick: prefix = 'L' # Convert numbers to padded strings and add spaces between digits x_str = f"{abs(x):04d}" y_str = f"{abs(y):04d}" x_spaced = ' '.join(x_str) y_spaced = ' '.join(y_str) # Format with sign and proper spacing return prefix + " " + f"{'+ ' if x >= 0 else '- '}{x_spaced} : {'+ ' if y >= 0 else '- '}{y_spaced}" def predict_next_frame(previous_frames, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray: width, height = 512, 384 all_click_positions = [] initial_images = load_initial_images(width, height) print ('length of previous_frames', len(previous_frames)) padding_image = torch.zeros((height//8, width//8, 4)).to(device) # Prepare the image sequence for the model assert len(initial_images) == 32 image_sequence = previous_frames[-32:] # Take the last 7 frames i = 1 while len(image_sequence) < 32: image_sequence.insert(0, padding_image) i += 1 #image_sequence.append(initial_images[len(image_sequence)]) # Convert the image sequence to a tensor and concatenate in the channel dimension #image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence_list, target_range=(-1, 1))) #image_sequence_tensor = image_sequence_tensor.to(device) image_sequence_tensor = torch.cat(image_sequence, dim=1) #image_sequence_tensor = (image_sequence_tensor - data_mean) / data_std # Prepare the prompt based on the previous actions action_descriptions = [] #initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604'] initial_actions = ['0:0'] * 32 #initial_actions = ['N N N N N : N N N N N'] * 7 def unnorm_coords(x, y): return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2) # Process initial actions if there are not enough previous actions while len(previous_actions) < 33: #assert False x, y = map(int, initial_actions.pop(0).split(':')) previous_actions.insert(0, ("N", unnorm_coords(x, y))) prev_x = 0 prev_y = 0 #print ('here') if False: prompt = 'N + 0 4 1 6 : + 0 3 2 0 L + 0 2 0 0 : + 0 1 7 6 N + 0 3 8 4 : + 0 0 4 8 N + 0 3 6 0 : + 0 2 5 6 N + 0 3 6 8 : + 0 0 1 6 N + 0 0 3 2 : + 0 1 0 4 L + 0 2 8 0 : + 0 0 4 0 L + 0 5 0 4 : + 0 0 7 2' previous_actions = [('move', (416, 320)), ('left_click', (200, 176)), ('move', (384, 48)), ('move', (360, 256)), ('move', (368, 16)), ('move', (32, 104)), ('left_click', (280, 40)), ('left_click', (504, 72))] prompt = 'N + 0 3 4 4 : + 0 3 2 0 N + 0 4 8 0 : + 0 1 2 8 N + 0 4 4 8 : + 0 3 6 0 N + 0 4 4 8 : + 0 0 6 4 N + 0 4 6 4 : + 0 3 3 6 N + 0 0 2 4 : + 0 1 3 6 N + 0 1 2 8 : + 0 2 8 0 N + 0 4 4 0 : + 0 0 4 8' previous_actions = [('move', (344, 320)), ('move', (480, 128)), ('move', (448, 360)), ('move', (448, 64)), ('move', (464, 336)), ('move', (24, 136)), ('move', (128, 280)), ('move', (440, 48))] prompt = 'N + 0 4 7 2 : + 0 1 6 0 N + 0 3 0 4 : + 0 2 7 2 N + 0 0 0 0 : + 0 1 7 6 N + 0 2 0 0 : + 0 0 3 2 N + 0 1 6 8 : + 0 0 5 6 L + 0 4 3 2 : + 0 0 4 0 L + 0 2 0 8 : + 0 2 7 2 L + 0 1 8 4 : + 0 0 0 8' previous_actions = [('move', (472, 160)), ('move', (304, 272)), ('move', (0, 176)), ('move', (200, 32)), ('left_click', (168, 56)), ('left_click', (432, 40)), ('left_click', (208, 272)), ('left_click', (184, 8))] prompt = 'N + 0 0 1 6 : + 0 3 2 8 N + 0 3 0 4 : + 0 0 9 6 N + 0 2 4 0 : + 0 1 9 2 N + 0 1 5 2 : + 0 0 5 6 L + 0 2 8 8 : + 0 1 7 6 L + 0 0 5 6 : + 0 3 7 6 N + 0 1 3 6 : + 0 3 6 0 N + 0 1 1 2 : + 0 0 4 8' previous_actions = [('move', (16, 328)), ('move', (304, 96)), ('move', (240, 192)), ('move', (152, 56)), ('left_click', (288, 176)), ('left_click', (56, 376)), ('move', (136, 360)), ('move', (112, 48))] prompt = 'L + 0 0 5 6 : + 0 1 2 8 N + 0 4 0 0 : + 0 0 6 4 N + 0 5 0 4 : + 0 1 2 8 N + 0 4 2 4 : + 0 1 2 0 N + 0 3 2 0 : + 0 1 0 4 N + 0 2 8 0 : + 0 1 0 4 N + 0 2 7 2 : + 0 1 0 4 N + 0 2 7 2 : + 0 1 0 4' previous_actions = [('left_click', (56, 128)), ('left_click', (400, 64)), ('move', (504, 128)), ('move', (424, 120)), ('left_click', (320, 104)), ('left_click', (280, 104)), ('move', (272, 104)), ('move', (272, 104))] for action_type, pos in previous_actions[-33:]: #print ('here3', action_type, pos) if action_type == 'move': action_type = 'N' if action_type == 'left_click': action_type = 'L' if action_type == "N": x, y = pos #norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2 #norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2 #norm_x = x + (1920 - 512) / 2 #norm_y = y + (1080 - 512) / 2 norm_x = x norm_y = y if False and DEBUG_TEACHER_FORCING: norm_x = x norm_y = y #action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}") #action_descriptions.append(format_action(f'{norm_x-prev_x:.0f}~{norm_y-prev_y:.0f}', x==0 and y==0)) action_descriptions.append(format_action(f'{norm_x:.0f}~{norm_y:.0f}', x==0 and y==0)) prev_x = norm_x prev_y = norm_y elif action_type == "L": x, y = pos #norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2 #norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2 #norm_x = x + (1920 - 512) / 2 #norm_y = y + (1080 - 512) / 2 norm_x = x norm_y = y if False and DEBUG_TEACHER_FORCING: norm_x = x #+ (1920 - 512) / 2 norm_y = y #+ (1080 - 512) / 2 #if DEBUG: # norm_x = x # norm_y = y #action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}") #action_descriptions.append(format_action(f'{norm_x-prev_x:.0f}~{norm_y-prev_y:.0f}', x==0 and y==0)) action_descriptions.append(format_action(f'{norm_x:.0f}~{norm_y:.0f}', x==0 and y==0, True)) elif action_type == "right_click": assert False action_descriptions.append("right_click") else: assert False prompt = " ".join(action_descriptions[-33:]) print(prompt) #prompt = "N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N + 0 3 0 7 : + 0 3 7 5" #x, y, action_type = parse_action_string(action_descriptions[-1]) #pos_map, leftclick_map, x_scaled, y_scaled = create_position_and_click_map((x, y), action_type) leftclick_maps = [] pos_maps = [] for j in range(1, 34): print ('fsfs', action_descriptions[-j]) x, y, action_type = parse_action_string(action_descriptions[-j]) pos_map_j, leftclick_map_j, x_scaled_j, y_scaled_j = create_position_and_click_map((x, y), action_type) leftclick_maps.append(leftclick_map_j) pos_maps.append(pos_map_j) if j == 1: x_scaled = x_scaled_j y_scaled = y_scaled_j if action_type == 'L': all_click_positions.append((x, y)) #prompt = '' #prompt = "1~1 0~0 0~0 0~0 0~0 0~0 0~0 0~0" print(prompt) #prompt = prompt.replace('L', 'N') #print ('changing L to N') # Generate the next frame new_frame, new_frame_feedback = sample_frame(model, prompt, image_sequence_tensor, pos_maps=pos_maps, leftclick_maps=leftclick_maps) # Convert the generated frame to the correct format new_frame = new_frame.transpose(1, 2, 0) print (new_frame.max(), new_frame.min()) #new_frame = new_frame * data_std + data_mean new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1)) # Draw the trace of previous actions new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions, x_scaled, y_scaled) # Track click positions #x, y, action_type = parse_action_string(action_descriptions[-1]) return new_frame_with_trace, new_frame_denormalized, new_frame_feedback # WebSocket endpoint for continuous user interaction @app.websocket("/ws") async def websocket_endpoint(websocket: WebSocket): #global all_click_positions # Add this line #all_click_positions = [] # Reset at the start of each connection client_id = id(websocket) # Use a unique identifier for each connection print(f"New WebSocket connection: {client_id}") await websocket.accept() previous_frames = [] previous_actions = [] positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368'] #positions = ['815~335', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368'] positions = ['307~375'] positions = ['815~335'] #positions = ['787~342'] positions = ['300~800'] if DEBUG_TEACHER_FORCING: #print ('here2') # Use the predefined actions for image_81 debug_actions = [ 'N + 0 8 5 3 : + 0 4 5 0', 'N + 0 8 7 1 : + 0 4 6 3', 'N + 0 8 9 0 : + 0 4 7 5', 'N + 0 9 0 8 : + 0 4 8 8', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'L + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'L + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1', #'N + 0 9 2 7 : + 0 5 0 1' ] debug_actions = [ 'N + 1 1 6 5 : + 0 4 4 3', 'N + 1 1 7 0 : + 0 4 1 8', 'N + 1 1 7 5 : + 0 3 9 4', 'N + 1 1 8 1 : + 0 3 7 0', 'N + 1 1 8 4 : + 0 3 5 8', 'N + 1 1 8 9 : + 0 3 3 3', 'N + 1 1 9 4 : + 0 3 0 9', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'L + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7' ] debug_actions = [ 'N + 1 1 6 5 : + 0 4 4 3', 'N + 1 1 7 0 : + 0 4 1 8', 'N + 1 1 7 5 : + 0 3 9 4', 'N + 1 1 8 1 : + 0 3 7 0', 'N + 1 1 8 4 : + 0 3 5 8', 'N + 1 1 8 9 : + 0 3 3 3', 'N + 1 1 9 4 : + 0 3 0 9', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7' ] debug_actions = ['N + 0 0 4 0 : + 0 2 0 4', 'N + 0 1 3 8 : + 0 1 9 0', 'N + 0 2 7 4 : + 0 3 8 3', 'N + 0 5 0 1 : + 0 1 7 3', 'L + 0 4 7 3 : + 0 0 8 7', 'N + 0 1 0 9 : + 0 3 4 4', 'N + 0 0 5 2 : + 0 1 9 4', 'N + 0 3 6 5 : + 0 2 3 2', 'N + 0 3 8 9 : + 0 2 4 5', 'N + 0 0 2 0 : + 0 0 5 9', 'N + 0 4 7 3 : + 0 1 5 7', 'L + 0 1 9 1 : + 0 0 8 7', 'L + 0 1 9 1 : + 0 0 8 7', 'N + 0 3 4 3 : + 0 2 6 3', ] #'N + 0 2 0 5 : + 0 1 3 3'] previous_actions = [] for action in debug_actions[-8:]: #action = action.replace('1 1', '0 4') x, y, action_type = parse_action_string(action) previous_actions.append((action_type, (x, y))) positions = [ 'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 1 8 : + 0 4 9 2', 'N + 0 9 0 8 : + 0 4 8 3', 'N + 0 8 9 8 : + 0 4 7 4', 'N + 0 8 8 9 : + 0 4 6 5', 'N + 0 8 8 0 : + 0 4 5 6', 'N + 0 8 7 0 : + 0 4 4 7', 'N + 0 8 6 0 : + 0 4 3 8', 'N + 0 8 5 1 : + 0 4 2 9', 'N + 0 8 4 2 : + 0 4 2 0', 'N + 0 8 3 2 : + 0 4 1 1', 'N + 0 8 3 2 : + 0 4 1 1' ] positions = [ #'L + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 7 9 : + 0 3 0 3', 'N + 1 1 4 2 : + 0 3 1 4', 'N + 1 1 0 6 : + 0 3 2 6', 'N + 1 0 6 9 : + 0 3 3 7', 'N + 1 0 5 1 : + 0 3 4 3', 'N + 1 0 1 4 : + 0 3 5 4', 'N + 0 9 7 8 : + 0 3 6 5', 'N + 0 9 4 2 : + 0 3 7 7', 'N + 0 9 0 5 : + 0 3 8 8', 'N + 0 8 6 8 : + 0 4 0 0', 'N + 0 8 3 2 : + 0 4 1 1' ] positions = ['L + 0 1 9 1 : + 0 0 8 7', 'L + 0 1 9 1 : + 0 0 8 7', 'N + 0 3 4 3 : + 0 2 6 3', 'N + 0 2 0 5 : + 0 1 3 3', 'N + 0 0 7 6 : + 0 3 4 5', 'N + 0 3 1 8 : + 0 3 3 3', 'N + 0 2 5 4 : + 0 2 9 0', 'N + 0 1 0 6 : + 0 1 6 4', 'N + 0 0 7 4 : + 0 2 8 4', 'N + 0 0 2 4 : + 0 0 4 1', 'N + 0 1 5 0 : + 0 3 8 3', 'N + 0 4 0 5 : + 0 1 6 8', 'N + 0 0 5 4 : + 0 3 2 4', 'N + 0 2 9 0 : + 0 1 4 1', 'N + 0 4 0 2 : + 0 0 0 9', 'N + 0 3 0 7 : + 0 3 3 2', 'N + 0 2 2 0 : + 0 3 7 1', 'N + 0 0 8 2 : + 0 1 5 1'] positions = positions[3:] #positions = positions[:4] #position = positions[0] #positions = positions[1:] #x, y, action_type = parse_action_string(position) #mouse_position = (x, y) #previous_actions.append((action_type, mouse_position)) if not DEBUG_TEACHER_FORCING: previous_actions = [] for t in range(15): # Generate 15 actions # Random movement x = np.random.randint(0, 64) y = np.random.randint(0, 48) #x = max(0, min(63, x + dx)) #y = max(0, min(47, y + dy)) # Random click with 20% probability if np.random.random() < 0.2: action_type = 'L' else: action_type = 'N' # Format action string previous_actions.append((action_type, (x*8, y*8))) try: previous_actions = [] previous_frames = [] frames_since_update = 0 frame_times = [] while True: try: # Receive user input with a timeout #data = await asyncio.wait_for(websocket.receive_json(), timeout=90000.0) data = await websocket.receive_json() if data.get("type") == "heartbeat": await websocket.send_json({"type": "heartbeat_response"}) continue action_type = data.get("action_type") mouse_position = data.get("mouse_position") #if np.random.random() < 0.9: # print ('setting left click') # action_type = 'left_click' #else: # print ('not setting left click') #action_type = 'move' #print ('setting normal move') # Store the actions if False and DEBUG: position = positions[0] #positions = positions[1:] #mouse_position = position.split('~') #mouse_position = [int(item) for item in mouse_position] #mouse_position = '+ 0 8 1 5 : + 0 3 3 5' if DEBUG_TEACHER_FORCING: position = positions[0] positions = positions[1:] x, y, action_type = parse_action_string(position) mouse_position = (x, y) previous_actions.append((action_type, mouse_position)) if True: previous_actions.append((action_type, mouse_position)) #previous_actions = [(action_type, mouse_position)] #if not DEBUG_TEACHER_FORCING: # x, y = mouse_position # x = x//8 * 8 # y = y // 8 * 8 # assert x % 8 == 0 # assert y % 8 == 0 # mouse_position = (x, y) # #mouse_position = (x//8, y//8) # previous_actions.append((action_type, mouse_position)) # Log the start time start_time = time.time() # Predict the next frame based on the previous frames and actions #if DEBUG_TEACHER_FORCING: # print ('predicting', f"record_10003/image_{117+len(previous_frames)}.png") print ('previous_actions', previous_actions) next_frame, next_frame_append, next_frame_feedback = predict_next_frame(previous_frames, previous_actions) feedback = True if feedback: previous_frames.append(next_frame_feedback) else: #previous_frames = [] previous_actions = [] processing_time = time.time() - start_time print(f"Frame processing time: {processing_time:.2f} seconds") frame_times.append(processing_time) frames_since_update += 1 print (f"Average frame processing time: {np.mean(frame_times):.2f} seconds") fps = 1 / np.mean(frame_times) print (f"FPS: {fps:.2f}") #previous_actions = [] # Load and append the corresponding ground truth image instead of model output #print ('here4', len(previous_frames)) #if DEBUG_TEACHER_FORCING: # img = Image.open(f"record_10003/image_{117+len(previous_frames)}.png") # previous_frames.append(np.array(img)) #else: # assert False # previous_frames.append(next_frame_append) # pass #previous_frames = [] #previous_actions = [] # Convert the numpy array to a base64 encoded image img = Image.fromarray(next_frame) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() # Log the processing time # Send the generated frame back to the client await websocket.send_json({"image": img_str}) except asyncio.TimeoutError: print("WebSocket connection timed out") #break # Exit the loop on timeout except WebSocketDisconnect: print("WebSocket disconnected") #break # Exit the loop on disconnect except Exception as e: print(f"Error in WebSocket connection {client_id}: {e}") finally: print(f"WebSocket connection closed: {client_id}") #await websocket.close() # Ensure the WebSocket is closed