from fastapi import FastAPI, WebSocket, WebSocketDisconnect from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from typing import List, Tuple import numpy as np from PIL import Image, ImageDraw import base64 import io import asyncio from utils import initialize_model, sample_frame import torch import os import time DEBUG = True app = FastAPI() # Mount the static directory to serve HTML, JavaScript, and CSS files app.mount("/static", StaticFiles(directory="static"), name="static") # Serve the index.html file at the root URL @app.get("/") async def get(): return HTMLResponse(open("static/index.html").read()) def generate_random_image(width: int, height: int) -> np.ndarray: return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray: pil_image = Image.fromarray(image) draw = ImageDraw.Draw(pil_image) for i, (action_type, position) in enumerate(previous_actions): color = (255, 0, 0) if action_type == "move" else (0, 255, 0) x, y = position if DEBUG: x = x * 256 / 1024 y = y * 256 / 1024 draw.ellipse([x-2, y-2, x+2, y+2], fill=color) if i > 0: #prev_x, prev_y = previous_actions[i-1][1] draw.line([prev_x, prev_y, x, y], fill=color, width=1) prev_x, prev_y = x, y return np.array(pil_image) # Initialize the model at the start of your application model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) def load_initial_images(width, height): initial_images = [] for i in range(7): initial_images.append(np.zeros((height, width, 3), dtype=np.uint8)) #image_path = f"image_{i}.png" #if os.path.exists(image_path): # img = Image.open(image_path).resize((width, height)) # initial_images.append(np.array(img)) #else: # print(f"Warning: {image_path} not found. Using blank image instead.") # initial_images.append(np.zeros((height, width, 3), dtype=np.uint8)) return initial_images def normalize_images(images, target_range=(-1, 1)): images = np.stack(images).astype(np.float32) if target_range == (-1, 1): return images / 127.5 - 1 elif target_range == (0, 1): return images / 255.0 else: raise ValueError(f"Unsupported target range: {target_range}") def denormalize_image(image, source_range=(-1, 1)): if source_range == (-1, 1): return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8) elif source_range == (0, 1): return (image * 255).clip(0, 255).astype(np.uint8) else: raise ValueError(f"Unsupported source range: {source_range}") def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray: width, height = 256, 256 initial_images = load_initial_images(width, height) # Prepare the image sequence for the model image_sequence = previous_frames[-7:] # Take the last 7 frames while len(image_sequence) < 7: image_sequence.insert(0, initial_images[len(image_sequence)]) # Convert the image sequence to a tensor and concatenate in the channel dimension image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1))) image_sequence_tensor = image_sequence_tensor.to(device) # Prepare the prompt based on the previous actions action_descriptions = [] initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604'] initial_actions = ['0:0'] * 7 def unnorm_coords(x, y): return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2) # Process initial actions if there are not enough previous actions while len(previous_actions) < 8: x, y = map(int, initial_actions.pop(0).split(':')) previous_actions.insert(0, ("move", unnorm_coords(x, y))) prev_x = 0 prev_y = 0 for action_type, pos in previous_actions: #[-8:]: if action_type == "move": x, y = pos norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2 norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2 if DEBUG: norm_x = x norm_y = y action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}") prev_x = norm_x prev_y = norm_y elif action_type == "left_click": action_descriptions.append("left_click") elif action_type == "right_click": action_descriptions.append("right_click") prompt = " ".join(action_descriptions[-8:]) print(prompt) # Generate the next frame new_frame = sample_frame(model, prompt, image_sequence_tensor) # Convert the generated frame to the correct format new_frame = new_frame.transpose(1, 2, 0) print (new_frame.max(), new_frame.min()) new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1)) # Draw the trace of previous actions new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions) return new_frame_with_trace, new_frame_denormalized # WebSocket endpoint for continuous user interaction @app.websocket("/ws") async def websocket_endpoint(websocket: WebSocket): client_id = id(websocket) # Use a unique identifier for each connection print(f"New WebSocket connection: {client_id}") await websocket.accept() previous_frames = [] previous_actions = [] positions = ['496~61', '815~335', '815~335', '815~335', '787~342', '749~345', '749~345', '703~346', '703~346', '654~347', '604~349', '604~349', '555~353', '509~357', '509~357'] positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368'] try: while True: try: # Receive user input with a timeout data = await asyncio.wait_for(websocket.receive_json(), timeout=90.0) if data.get("type") == "heartbeat": await websocket.send_json({"type": "heartbeat_response"}) continue action_type = data.get("action_type") mouse_position = data.get("mouse_position") # Store the actions if DEBUG: position = positions[0] positions = positions[1:] mouse_position = position.split('~') mouse_position = [int(item) for item in mouse_position] previous_actions.append((action_type, mouse_position)) # Log the start time start_time = time.time() # Predict the next frame based on the previous frames and actions next_frame, next_frame_append = predict_next_frame(previous_frames, previous_actions) previous_frames.append(next_frame_append) # Convert the numpy array to a base64 encoded image img = Image.fromarray(next_frame) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() # Log the processing time processing_time = time.time() - start_time print(f"Frame processing time: {processing_time:.2f} seconds") # Send the generated frame back to the client await websocket.send_json({"image": img_str}) except asyncio.TimeoutError: print("WebSocket connection timed out") break except WebSocketDisconnect: print("WebSocket disconnected") break except Exception as e: print(f"Error in WebSocket connection {client_id}: {e}") finally: print(f"WebSocket connection closed: {client_id}") # Remove the explicit websocket.close() call here