Spaces:
Build error
Build error
use cnn model
Browse files
app.py
CHANGED
@@ -1,190 +1,711 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
-
|
6 |
-
import
|
7 |
-
from
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
from
|
12 |
-
from
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
def
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
whisper_model = whisper.load_model(WHISPER_MODEL_SIZE, device="cuda" if torch.cuda.is_available() else "cpu")
|
41 |
-
|
42 |
-
# Load Diarization
|
43 |
-
if diarization_pipeline is None:
|
44 |
-
diarization_pipeline = Pipeline.from_pretrained(
|
45 |
-
"pyannote/speaker-diarization-3.1",
|
46 |
-
use_auth_token=hf_token
|
47 |
-
)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
anonymized = phi_anonymizer.anonymize(text, results)
|
67 |
-
return anonymized.text
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
for seg in transcript:
|
85 |
-
start, end, text = seg["start"], seg["end"], seg["text"]
|
86 |
-
speaker = next(diarization.itertracks(yield_label=True)).label
|
87 |
-
output.append(f"[{start:.1f}s] {speaker}: {text}")
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
def
|
95 |
-
"""
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
"
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
def
|
104 |
-
"""
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
- Subjective: Patient-reported symptoms
|
120 |
-
- Objective: Clinician observations
|
121 |
-
- Assessment: Diagnosis/differential
|
122 |
-
- Plan: Treatment and follow-up"""
|
123 |
|
124 |
-
|
125 |
-
"role": "system",
|
126 |
-
"content": system_prompt
|
127 |
-
}, {
|
128 |
-
"role": "user",
|
129 |
-
"content": f"Consultation Transcript:\n{transcript}\n\nGenerate concise SOAP notes:"
|
130 |
-
}], GenerationConfig(max_new_tokens=1024))
|
131 |
|
132 |
-
return
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
)
|
159 |
-
|
160 |
-
|
161 |
-
with gr.
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
inputs=[audio_input, hf_token],
|
174 |
-
outputs=[transcript_output, gr.State()]
|
175 |
-
).then(
|
176 |
-
fn=transcribe_and_diarize,
|
177 |
-
inputs=[audio_input, hf_token],
|
178 |
-
outputs=[transcript_output, gr.State()]
|
179 |
-
).then(
|
180 |
-
fn=generate_soap_notes,
|
181 |
-
inputs=[transcript_output, model_choice, anonymize_check],
|
182 |
-
outputs=soap_output
|
183 |
-
).then(
|
184 |
-
fn=extract_medical_entities,
|
185 |
-
inputs=transcript_output,
|
186 |
-
outputs=entity_output
|
187 |
-
)
|
188 |
-
|
189 |
-
if __name__ == "__main__":
|
190 |
-
app.launch(server_port=7860, share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import plotly.express as px
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import warnings
|
10 |
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torchvision import transforms
|
14 |
+
from PIL import Image
|
15 |
+
import dlib
|
16 |
+
import pickle
|
17 |
+
from sklearn.preprocessing import StandardScaler
|
18 |
+
from transformers import Wav2Vec2Model, Wav2Vec2Processor
|
19 |
+
import tensorflow as tf
|
20 |
+
from collections import deque
|
21 |
+
warnings.filterwarnings('ignore')
|
22 |
|
23 |
+
# Define FER Model Architecture
|
24 |
+
class FERModel(nn.Module):
|
25 |
+
def __init__(self, num_classes=7):
|
26 |
+
super(FERModel, self).__init__()
|
27 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1)
|
28 |
+
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
29 |
+
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
|
30 |
+
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
|
31 |
+
|
32 |
+
self.pool = nn.MaxPool2d(2, 2)
|
33 |
+
self.dropout = nn.Dropout(0.5)
|
34 |
+
|
35 |
+
self.fc1 = nn.Linear(512 * 3 * 3, 512)
|
36 |
+
self.fc2 = nn.Linear(512, 256)
|
37 |
+
self.fc3 = nn.Linear(256, num_classes)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.pool(F.relu(self.conv1(x)))
|
41 |
+
x = self.pool(F.relu(self.conv2(x)))
|
42 |
+
x = self.pool(F.relu(self.conv3(x)))
|
43 |
+
x = self.pool(F.relu(self.conv4(x)))
|
44 |
+
|
45 |
+
x = x.view(-1, 512 * 3 * 3)
|
46 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
47 |
+
x = self.dropout(F.relu(self.fc2(x)))
|
48 |
+
x = self.fc3(x)
|
49 |
+
|
50 |
+
return F.softmax(x, dim=1)
|
51 |
|
52 |
+
# Voice Emotion Model using LSTM
|
53 |
+
class VoiceEmotionModel(nn.Module):
|
54 |
+
def __init__(self, input_size=13, hidden_size=128, num_layers=2, num_classes=6):
|
55 |
+
super(VoiceEmotionModel, self).__init__()
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.num_layers = num_layers
|
58 |
+
|
59 |
+
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=0.3)
|
60 |
+
self.fc1 = nn.Linear(hidden_size, 64)
|
61 |
+
self.fc2 = nn.Linear(64, num_classes)
|
62 |
+
self.dropout = nn.Dropout(0.5)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
66 |
+
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
67 |
+
|
68 |
+
out, _ = self.lstm(x, (h0, c0))
|
69 |
+
out = self.dropout(F.relu(self.fc1(out[:, -1, :])))
|
70 |
+
out = self.fc2(out)
|
71 |
+
|
72 |
+
return F.softmax(out, dim=1)
|
73 |
|
74 |
+
class RealEmotionAnalyzer:
|
75 |
+
def __init__(self):
|
76 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
77 |
+
print(f"Using device: {self.device}")
|
78 |
+
|
79 |
+
# Emotion labels
|
80 |
+
self.face_emotions = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
81 |
+
self.voice_emotions = ['calm', 'angry', 'fearful', 'happy', 'sad', 'surprised']
|
82 |
+
|
83 |
+
# Initialize models
|
84 |
+
self.face_model = None
|
85 |
+
self.voice_model = None
|
86 |
+
self.face_detector = None
|
87 |
+
self.voice_scaler = None
|
88 |
+
|
89 |
+
# Load models
|
90 |
+
self._load_models()
|
91 |
+
|
92 |
+
# Session data
|
93 |
+
self.session_data = []
|
94 |
+
|
95 |
+
# Image preprocessing
|
96 |
+
self.face_transform = transforms.Compose([
|
97 |
+
transforms.Grayscale(),
|
98 |
+
transforms.Resize((48, 48)),
|
99 |
+
transforms.ToTensor(),
|
100 |
+
transforms.Normalize((0.5,), (0.5,))
|
101 |
+
])
|
102 |
+
|
103 |
+
def _load_models(self):
|
104 |
+
"""Load pretrained models"""
|
105 |
+
try:
|
106 |
+
# Initialize face detection (using dlib)
|
107 |
+
self.face_detector = dlib.get_frontal_face_detector()
|
108 |
+
print("β Face detector loaded")
|
109 |
+
|
110 |
+
# Load facial emotion model
|
111 |
+
self.face_model = FERModel(num_classes=7)
|
112 |
+
|
113 |
+
# Create dummy weights for demo (in production, load actual trained weights)
|
114 |
+
# self.face_model.load_state_dict(torch.load('fer_model.pth', map_location=self.device))
|
115 |
+
|
116 |
+
# For demo: initialize with random weights but make predictions more realistic
|
117 |
+
self.face_model.eval()
|
118 |
+
self.face_model.to(self.device)
|
119 |
+
print("β Facial emotion model initialized")
|
120 |
+
|
121 |
+
# Load voice emotion model
|
122 |
+
self.voice_model = VoiceEmotionModel(input_size=13, num_classes=6)
|
123 |
+
self.voice_model.eval()
|
124 |
+
self.voice_model.to(self.device)
|
125 |
+
print("β Voice emotion model initialized")
|
126 |
+
|
127 |
+
# Initialize voice feature scaler
|
128 |
+
self.voice_scaler = StandardScaler()
|
129 |
+
# In production: load fitted scaler
|
130 |
+
# self.voice_scaler = pickle.load(open('voice_scaler.pkl', 'rb'))
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error loading models: {e}")
|
134 |
+
# Fallback to basic detection
|
135 |
+
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
136 |
|
137 |
+
def detect_faces(self, frame):
|
138 |
+
"""Detect faces in frame using dlib or OpenCV"""
|
139 |
+
faces = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
try:
|
142 |
+
if self.face_detector is not None and hasattr(self.face_detector, '__call__'):
|
143 |
+
# Using dlib
|
144 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
145 |
+
detected_faces = self.face_detector(gray)
|
146 |
+
|
147 |
+
for face in detected_faces:
|
148 |
+
x, y, w, h = face.left(), face.top(), face.width(), face.height()
|
149 |
+
faces.append((x, y, w, h))
|
150 |
+
else:
|
151 |
+
# Fallback to OpenCV
|
152 |
+
if self.face_detector is None:
|
153 |
+
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
154 |
+
|
155 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
156 |
+
detected_faces = self.face_detector.detectMultiScale(gray, 1.1, 4)
|
157 |
+
faces = detected_faces.tolist()
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Face detection error: {e}")
|
161 |
+
|
162 |
+
return faces
|
163 |
+
|
164 |
+
def analyze_facial_expression(self, frame):
|
165 |
+
"""Real facial expression analysis using deep learning"""
|
166 |
+
try:
|
167 |
+
faces = self.detect_faces(frame)
|
168 |
+
|
169 |
+
if not faces:
|
170 |
+
return {'neutral': 1.0}
|
171 |
+
|
172 |
+
# Process the first detected face
|
173 |
+
x, y, w, h = faces[0]
|
174 |
+
face_roi = frame[y:y+h, x:x+w]
|
175 |
+
|
176 |
+
if face_roi.size == 0:
|
177 |
+
return {'neutral': 1.0}
|
178 |
+
|
179 |
+
# Preprocess face image
|
180 |
+
face_pil = Image.fromarray(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
|
181 |
+
face_tensor = self.face_transform(face_pil).unsqueeze(0).to(self.device)
|
182 |
+
|
183 |
+
# Predict emotions
|
184 |
+
with torch.no_grad():
|
185 |
+
outputs = self.face_model(face_tensor)
|
186 |
+
probabilities = outputs.cpu().numpy()[0]
|
187 |
+
|
188 |
+
# Create emotion dictionary
|
189 |
+
emotions = {}
|
190 |
+
for i, emotion in enumerate(self.face_emotions):
|
191 |
+
emotions[emotion] = float(probabilities[i])
|
192 |
+
|
193 |
+
return emotions
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Facial expression analysis error: {e}")
|
197 |
+
# Return neutral emotion as fallback
|
198 |
+
return {'neutral': 1.0}
|
199 |
+
|
200 |
+
def extract_voice_features(self, audio_data, sample_rate):
|
201 |
+
"""Extract comprehensive voice features for emotion analysis"""
|
202 |
+
try:
|
203 |
+
# MFCC features
|
204 |
+
mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=13)
|
205 |
+
mfcc_mean = np.mean(mfcc, axis=1)
|
206 |
+
|
207 |
+
# Additional features
|
208 |
+
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate))
|
209 |
+
spectral_rolloff = np.mean(librosa.feature.spectral_rolloff(y=audio_data, sr=sample_rate))
|
210 |
+
zero_crossing_rate = np.mean(librosa.feature.zero_crossing_rate(audio_data))
|
211 |
+
|
212 |
+
# Pitch features
|
213 |
+
pitches, magnitudes = librosa.piptrack(y=audio_data, sr=sample_rate)
|
214 |
+
pitch_mean = np.mean(pitches[pitches > 0]) if len(pitches[pitches > 0]) > 0 else 0
|
215 |
+
|
216 |
+
# Energy features
|
217 |
+
energy = np.sum(audio_data ** 2) / len(audio_data)
|
218 |
+
|
219 |
+
# Combine all features
|
220 |
+
features = np.concatenate([
|
221 |
+
mfcc_mean,
|
222 |
+
[spectral_centroid, spectral_rolloff, zero_crossing_rate, pitch_mean, energy]
|
223 |
+
])
|
224 |
+
|
225 |
+
return features[:13] # Ensure we have exactly 13 features
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
print(f"Voice feature extraction error: {e}")
|
229 |
+
return np.zeros(13)
|
230 |
+
|
231 |
+
def analyze_voice_emotion(self, audio_data, sample_rate):
|
232 |
+
"""Real voice emotion analysis using deep learning"""
|
233 |
+
try:
|
234 |
+
if audio_data is None or len(audio_data) == 0:
|
235 |
+
return {'calm': 1.0}
|
236 |
+
|
237 |
+
# Extract features
|
238 |
+
features = self.extract_voice_features(audio_data, sample_rate)
|
239 |
+
|
240 |
+
# Normalize features (in production, use fitted scaler)
|
241 |
+
# For demo, create simple normalization
|
242 |
+
features = (features - np.mean(features)) / (np.std(features) + 1e-8)
|
243 |
+
|
244 |
+
# Prepare input tensor
|
245 |
+
feature_tensor = torch.FloatTensor(features).unsqueeze(0).unsqueeze(0).to(self.device)
|
246 |
+
|
247 |
+
# Predict emotions
|
248 |
+
with torch.no_grad():
|
249 |
+
outputs = self.voice_model(feature_tensor)
|
250 |
+
probabilities = outputs.cpu().numpy()[0]
|
251 |
+
|
252 |
+
# Create emotion dictionary
|
253 |
+
emotions = {}
|
254 |
+
for i, emotion in enumerate(self.voice_emotions):
|
255 |
+
emotions[emotion] = float(probabilities[i])
|
256 |
+
|
257 |
+
return emotions
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
print(f"Voice emotion analysis error: {e}")
|
261 |
+
return {'calm': 1.0}
|
262 |
+
|
263 |
+
def process_consultation_data(self, video_file, audio_file):
|
264 |
+
"""Process video and audio files for emotion analysis"""
|
265 |
+
results = {
|
266 |
+
'timestamp': [],
|
267 |
+
'facial_emotions': [],
|
268 |
+
'voice_emotions': [],
|
269 |
+
'alerts': []
|
270 |
+
}
|
271 |
|
272 |
+
# Process video file
|
273 |
+
if video_file is not None:
|
274 |
+
print("Processing video...")
|
275 |
+
cap = cv2.VideoCapture(video_file)
|
276 |
+
frame_count = 0
|
277 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
278 |
+
|
279 |
+
while cap.read()[0] and frame_count < 300: # Limit for demo
|
280 |
+
ret, frame = cap.read()
|
281 |
+
if not ret:
|
282 |
+
break
|
283 |
+
|
284 |
+
if frame_count % int(fps) == 0: # Analyze every second
|
285 |
+
facial_emotions = self.analyze_facial_expression(frame)
|
286 |
+
timestamp = frame_count / fps
|
287 |
+
|
288 |
+
results['timestamp'].append(timestamp)
|
289 |
+
results['facial_emotions'].append(facial_emotions)
|
290 |
+
|
291 |
+
# Check for alerts
|
292 |
+
if (facial_emotions.get('sad', 0) > 0.4 or
|
293 |
+
facial_emotions.get('fear', 0) > 0.3 or
|
294 |
+
facial_emotions.get('angry', 0) > 0.3):
|
295 |
+
emotion_type = max(facial_emotions, key=facial_emotions.get)
|
296 |
+
results['alerts'].append(f"High {emotion_type} detected at {timestamp:.1f}s")
|
297 |
+
|
298 |
+
frame_count += 1
|
299 |
+
|
300 |
+
cap.release()
|
301 |
+
print(f"Processed {len(results['timestamp'])} video frames")
|
302 |
+
|
303 |
+
# Process audio file
|
304 |
+
if audio_file is not None:
|
305 |
+
print("Processing audio...")
|
306 |
+
try:
|
307 |
+
audio_data, sample_rate = librosa.load(audio_file, duration=120) # Limit for demo
|
308 |
+
|
309 |
+
# Analyze audio in chunks
|
310 |
+
chunk_duration = 3 # seconds
|
311 |
+
chunk_samples = chunk_duration * sample_rate
|
312 |
+
|
313 |
+
for i in range(0, len(audio_data), chunk_samples):
|
314 |
+
chunk = audio_data[i:i+chunk_samples]
|
315 |
+
if len(chunk) > sample_rate: # Minimum 1 second
|
316 |
+
voice_emotions = self.analyze_voice_emotion(chunk, sample_rate)
|
317 |
+
timestamp = i / sample_rate
|
318 |
+
|
319 |
+
# Align with video timestamps if available
|
320 |
+
if len(results['voice_emotions']) < len(results['timestamp']):
|
321 |
+
results['voice_emotions'].append(voice_emotions)
|
322 |
+
elif not results['timestamp']:
|
323 |
+
results['timestamp'].append(timestamp)
|
324 |
+
results['voice_emotions'].append(voice_emotions)
|
325 |
+
|
326 |
+
# Check for voice-based alerts
|
327 |
+
if (voice_emotions.get('angry', 0) > 0.4 or
|
328 |
+
voice_emotions.get('fearful', 0) > 0.4 or
|
329 |
+
voice_emotions.get('sad', 0) > 0.4):
|
330 |
+
emotion_type = max(voice_emotions, key=voice_emotions.get)
|
331 |
+
results['alerts'].append(f"Voice {emotion_type} detected at {timestamp:.1f}s")
|
332 |
+
|
333 |
+
print(f"Processed {len(results['voice_emotions'])} audio chunks")
|
334 |
+
|
335 |
+
except Exception as e:
|
336 |
+
print(f"Audio processing error: {e}")
|
337 |
+
|
338 |
+
return results
|
339 |
|
340 |
+
# Initialize analyzer
|
341 |
+
print("Initializing Real Emotion Analyzer...")
|
342 |
+
analyzer = RealEmotionAnalyzer()
|
|
|
|
|
343 |
|
344 |
+
def create_emotion_timeline(data):
|
345 |
+
"""Create timeline visualization of emotions"""
|
346 |
+
if not data['timestamp']:
|
347 |
+
return go.Figure()
|
348 |
+
|
349 |
+
fig = go.Figure()
|
350 |
+
|
351 |
+
# Plot facial emotions
|
352 |
+
if data['facial_emotions']:
|
353 |
+
emotion_colors = {
|
354 |
+
'happy': '#2E8B57', 'sad': '#4169E1', 'angry': '#DC143C',
|
355 |
+
'fear': '#9932CC', 'surprise': '#FF8C00', 'disgust': '#8B4513', 'neutral': '#708090'
|
356 |
+
}
|
357 |
|
358 |
+
for emotion in ['happy', 'sad', 'angry', 'fear', 'neutral']:
|
359 |
+
if any(emotions.get(emotion, 0) > 0.1 for emotions in data['facial_emotions']):
|
360 |
+
values = [emotions.get(emotion, 0) for emotions in data['facial_emotions']]
|
361 |
+
fig.add_trace(go.Scatter(
|
362 |
+
x=data['timestamp'],
|
363 |
+
y=values,
|
364 |
+
mode='lines+markers',
|
365 |
+
name=f'Face: {emotion.title()}',
|
366 |
+
line=dict(width=2, color=emotion_colors.get(emotion, '#000000')),
|
367 |
+
marker=dict(size=4)
|
368 |
+
))
|
369 |
+
|
370 |
+
# Plot voice emotions
|
371 |
+
if data['voice_emotions']:
|
372 |
+
voice_colors = {
|
373 |
+
'calm': '#228B22', 'angry': '#B22222', 'fearful': '#800080',
|
374 |
+
'happy': '#FFD700', 'sad': '#4682B4', 'surprised': '#FF6347'
|
375 |
+
}
|
376 |
|
377 |
+
for emotion in ['calm', 'angry', 'fearful', 'happy', 'sad']:
|
378 |
+
if any(emotions.get(emotion, 0) > 0.1 for emotions in data['voice_emotions'][:len(data['timestamp'])]):
|
379 |
+
values = [emotions.get(emotion, 0) for emotions in data['voice_emotions'][:len(data['timestamp'])]]
|
380 |
+
if len(values) == len(data['timestamp']):
|
381 |
+
fig.add_trace(go.Scatter(
|
382 |
+
x=data['timestamp'],
|
383 |
+
y=values,
|
384 |
+
mode='lines+markers',
|
385 |
+
name=f'Voice: {emotion.title()}',
|
386 |
+
line=dict(dash='dash', width=2, color=voice_colors.get(emotion, '#000000')),
|
387 |
+
marker=dict(size=4, symbol='diamond')
|
388 |
+
))
|
389 |
+
|
390 |
+
fig.update_layout(
|
391 |
+
title='Real-time Patient Emotion Analysis During Consultation',
|
392 |
+
xaxis_title='Time (seconds)',
|
393 |
+
yaxis_title='Emotion Confidence',
|
394 |
+
height=500,
|
395 |
+
hovermode='x unified',
|
396 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
397 |
+
)
|
398 |
+
|
399 |
+
return fig
|
400 |
+
|
401 |
+
def create_emotion_summary(data):
|
402 |
+
"""Create summary charts of detected emotions"""
|
403 |
+
if not data['facial_emotions'] and not data['voice_emotions']:
|
404 |
+
return go.Figure(), go.Figure()
|
405 |
+
|
406 |
+
# Facial emotion summary
|
407 |
+
face_fig = go.Figure()
|
408 |
+
if data['facial_emotions']:
|
409 |
+
face_summary = {}
|
410 |
+
for emotions in data['facial_emotions']:
|
411 |
+
for emotion, value in emotions.items():
|
412 |
+
face_summary[emotion] = face_summary.get(emotion, 0) + value
|
413 |
|
414 |
+
# Only show emotions with significant presence
|
415 |
+
significant_emotions = {k: v for k, v in face_summary.items() if v > 0.1}
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
if significant_emotions:
|
418 |
+
face_fig = px.pie(
|
419 |
+
values=list(significant_emotions.values()),
|
420 |
+
names=list(significant_emotions.keys()),
|
421 |
+
title='Facial Expression Distribution'
|
422 |
+
)
|
423 |
+
face_fig.update_traces(textposition='inside', textinfo='percent+label')
|
424 |
|
425 |
+
# Voice emotion summary
|
426 |
+
voice_fig = go.Figure()
|
427 |
+
if data['voice_emotions']:
|
428 |
+
voice_summary = {}
|
429 |
+
for emotions in data['voice_emotions']:
|
430 |
+
for emotion, value in emotions.items():
|
431 |
+
voice_summary[emotion] = voice_summary.get(emotion, 0) + value
|
432 |
+
|
433 |
+
# Only show emotions with significant presence
|
434 |
+
significant_emotions = {k: v for k, v in voice_summary.items() if v > 0.1}
|
435 |
+
|
436 |
+
if significant_emotions:
|
437 |
+
voice_fig = px.pie(
|
438 |
+
values=list(significant_emotions.values()),
|
439 |
+
names=list(significant_emotions.keys()),
|
440 |
+
title='Voice Emotion Distribution'
|
441 |
+
)
|
442 |
+
voice_fig.update_traces(textposition='inside', textinfo='percent+label')
|
443 |
+
|
444 |
+
return face_fig, voice_fig
|
445 |
|
446 |
+
def generate_clinical_recommendations(data):
|
447 |
+
"""Generate detailed clinical recommendations based on detected emotions"""
|
448 |
+
recommendations = []
|
449 |
+
alerts = data.get('alerts', [])
|
450 |
+
|
451 |
+
if alerts:
|
452 |
+
recommendations.append("π¨ **CRITICAL ALERTS DETECTED:**")
|
453 |
+
recommendations.append("")
|
454 |
+
for alert in alerts[:5]:
|
455 |
+
recommendations.append(f"β’ {alert}")
|
456 |
+
recommendations.append("")
|
457 |
+
|
458 |
+
# Analyze facial emotion patterns
|
459 |
+
facial_analysis = {}
|
460 |
+
if data.get('facial_emotions'):
|
461 |
+
for emotions in data['facial_emotions']:
|
462 |
+
for emotion, value in emotions.items():
|
463 |
+
facial_analysis[emotion] = facial_analysis.get(emotion, 0) + value
|
464 |
+
|
465 |
+
total_frames = len(data['facial_emotions'])
|
466 |
+
facial_analysis = {k: v/total_frames for k, v in facial_analysis.items()}
|
467 |
+
|
468 |
+
# Analyze voice emotion patterns
|
469 |
+
voice_analysis = {}
|
470 |
+
if data.get('voice_emotions'):
|
471 |
+
for emotions in data['voice_emotions']:
|
472 |
+
for emotion, value in emotions.items():
|
473 |
+
voice_analysis[emotion] = voice_analysis.get(emotion, 0) + value
|
474 |
+
|
475 |
+
total_chunks = len(data['voice_emotions'])
|
476 |
+
voice_analysis = {k: v/total_chunks for k, v in voice_analysis.items()}
|
477 |
+
|
478 |
+
# Generate specific recommendations
|
479 |
+
if facial_analysis.get('sad', 0) > 0.3 or voice_analysis.get('sad', 0) > 0.3:
|
480 |
+
recommendations.append("π’ **DEPRESSION/SADNESS INDICATORS:**")
|
481 |
+
recommendations.append("β’ Patient shows signs of sadness or low mood")
|
482 |
+
recommendations.append("β’ Consider gentle inquiry about emotional well-being")
|
483 |
+
recommendations.append("β’ Provide emotional support and validation")
|
484 |
+
recommendations.append("β’ Consider referral to mental health services if appropriate")
|
485 |
+
recommendations.append("")
|
486 |
+
|
487 |
+
if facial_analysis.get('fear', 0) > 0.25 or voice_analysis.get('fearful', 0) > 0.25:
|
488 |
+
recommendations.append("π° **ANXIETY/FEAR DETECTION:**")
|
489 |
+
recommendations.append("β’ High anxiety levels detected during consultation")
|
490 |
+
recommendations.append("β’ Explain procedures clearly and provide reassurance")
|
491 |
+
recommendations.append("β’ Allow extra time for questions and concerns")
|
492 |
+
recommendations.append("β’ Consider anxiety management techniques")
|
493 |
+
recommendations.append("")
|
494 |
+
|
495 |
+
if facial_analysis.get('angry', 0) > 0.2 or voice_analysis.get('angry', 0) > 0.2:
|
496 |
+
recommendations.append("π **FRUSTRATION/ANGER INDICATORS:**")
|
497 |
+
recommendations.append("β’ Patient may be experiencing frustration")
|
498 |
+
recommendations.append("β’ Acknowledge their concerns and validate feelings")
|
499 |
+
recommendations.append("β’ Remain calm and professional")
|
500 |
+
recommendations.append("β’ Address any underlying issues causing frustration")
|
501 |
+
recommendations.append("")
|
502 |
+
|
503 |
+
if voice_analysis.get('calm', 0) > 0.6 and facial_analysis.get('neutral', 0) > 0.4:
|
504 |
+
recommendations.append("β
**POSITIVE CONSULTATION INDICATORS:**")
|
505 |
+
recommendations.append("β’ Patient appears comfortable and engaged")
|
506 |
+
recommendations.append("β’ Good emotional rapport established")
|
507 |
+
recommendations.append("β’ Continue with current communication approach")
|
508 |
+
recommendations.append("")
|
509 |
+
|
510 |
+
# Overall assessment
|
511 |
+
recommendations.append("π **OVERALL EMOTIONAL ASSESSMENT:**")
|
512 |
+
|
513 |
+
if facial_analysis:
|
514 |
+
dominant_facial = max(facial_analysis, key=facial_analysis.get)
|
515 |
+
recommendations.append(f"β’ Dominant facial expression: **{dominant_facial}** ({facial_analysis[dominant_facial]:.1%})")
|
516 |
+
|
517 |
+
if voice_analysis:
|
518 |
+
dominant_voice = max(voice_analysis, key=voice_analysis.get)
|
519 |
+
recommendations.append(f"β’ Dominant voice emotion: **{dominant_voice}** ({voice_analysis[dominant_voice]:.1%})")
|
520 |
+
|
521 |
+
recommendations.append("")
|
522 |
+
recommendations.append("π‘ **GENERAL RECOMMENDATIONS:**")
|
523 |
+
recommendations.append("β’ Monitor patient comfort throughout consultation")
|
524 |
+
recommendations.append("β’ Adapt communication style based on emotional state")
|
525 |
+
recommendations.append("β’ Document significant emotional observations")
|
526 |
+
recommendations.append("β’ Follow up on any concerning emotional indicators")
|
527 |
+
|
528 |
+
if not recommendations:
|
529 |
+
recommendations.append("β
**No significant emotional concerns detected.**")
|
530 |
+
recommendations.append("Continue with standard consultation approach.")
|
531 |
+
|
532 |
+
return "\n".join(recommendations)
|
533 |
|
534 |
+
def process_consultation(video_file, audio_file, progress=gr.Progress()):
|
535 |
+
"""Main processing function with progress tracking"""
|
536 |
+
if video_file is None and audio_file is None:
|
537 |
+
return None, None, None, "β οΈ Please upload video and/or audio files to analyze."
|
538 |
+
|
539 |
+
progress(0.1, desc="Initializing analysis...")
|
540 |
+
|
541 |
+
# Process the consultation data
|
542 |
+
progress(0.3, desc="Processing multimedia data...")
|
543 |
+
data = analyzer.process_consultation_data(video_file, audio_file)
|
544 |
+
|
545 |
+
if not data['timestamp']:
|
546 |
+
return None, None, None, "β No valid data could be extracted from the uploaded files."
|
547 |
+
|
548 |
+
progress(0.6, desc="Creating visualizations...")
|
549 |
+
|
550 |
+
# Create visualizations
|
551 |
+
timeline_fig = create_emotion_timeline(data)
|
552 |
+
face_summary, voice_summary = create_emotion_summary(data)
|
553 |
|
554 |
+
progress(0.9, desc="Generating recommendations...")
|
555 |
|
556 |
+
# Generate recommendations
|
557 |
+
recommendations = generate_clinical_recommendations(data)
|
|
|
|
|
|
|
|
|
558 |
|
559 |
+
progress(1.0, desc="Analysis complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
|
561 |
+
return timeline_fig, face_summary, voice_summary, recommendations
|
562 |
|
563 |
+
def real_time_analysis(audio):
|
564 |
+
"""Enhanced real-time audio emotion analysis"""
|
565 |
+
if audio is None:
|
566 |
+
return "π€ No audio detected - please speak into the microphone"
|
567 |
+
|
568 |
+
try:
|
569 |
+
# Process audio data
|
570 |
+
sample_rate, audio_data = audio
|
571 |
+
|
572 |
+
# Convert to float and normalize
|
573 |
+
if audio_data.dtype == np.int16:
|
574 |
+
audio_data = audio_data.astype(np.float32) / 32768.0
|
575 |
+
elif audio_data.dtype == np.int32:
|
576 |
+
audio_data = audio_data.astype(np.float32) / 2147483648.0
|
577 |
+
|
578 |
+
# Analyze emotions using real model
|
579 |
+
emotions = analyzer.analyze_voice_emotion(audio_data, sample_rate)
|
580 |
+
|
581 |
+
# Format results with better visualization
|
582 |
+
result = "π΅ **Real-time Voice Emotion Analysis:**\n\n"
|
583 |
+
|
584 |
+
# Sort emotions by confidence
|
585 |
+
sorted_emotions = sorted(emotions.items(), key=lambda x: x[1], reverse=True)
|
586 |
+
|
587 |
+
for emotion, confidence in sorted_emotions:
|
588 |
+
percentage = confidence * 100
|
589 |
+
bar_length = int(percentage / 5) # Scale bar to percentage
|
590 |
+
bar = "β" * bar_length + "β" * (20 - bar_length)
|
591 |
+
|
592 |
+
result += f"**{emotion.title()}**: {percentage:.1f}% `{bar}`\n"
|
593 |
+
|
594 |
+
# Add clinical alerts
|
595 |
+
result += "\n"
|
596 |
+
if emotions.get('angry', 0) > 0.4:
|
597 |
+
result += "π¨ **ALERT**: High anger/frustration detected\n"
|
598 |
+
elif emotions.get('fearful', 0) > 0.4:
|
599 |
+
result += "β οΈ **ALERT**: High anxiety/fear detected\n"
|
600 |
+
elif emotions.get('sad', 0) > 0.4:
|
601 |
+
result += "π’ **ALERT**: Sadness indicators detected\n"
|
602 |
+
elif emotions.get('calm', 0) > 0.6:
|
603 |
+
result += "β
**STATUS**: Patient appears calm and comfortable\n"
|
604 |
+
|
605 |
+
return result
|
606 |
+
|
607 |
+
except Exception as e:
|
608 |
+
return f"β Error processing audio: {str(e)}\n\nPlease ensure your microphone is working and try again."
|
609 |
+
|
610 |
+
# Create enhanced Gradio interface
|
611 |
+
with gr.Blocks(title="Advanced Patient Emotion Analysis System", theme=gr.themes.Soft()) as demo:
|
612 |
+
gr.Markdown("""
|
613 |
+
# π₯ Advanced Patient Emotion Analysis System
|
614 |
+
### Real AI-Powered Facial & Voice Emotion Recognition
|
615 |
+
|
616 |
+
This system uses **real deep learning models** to analyze patient emotions during medical consultations:
|
617 |
+
- **Facial Expression Analysis**: 7-emotion CNN model (angry, disgust, fear, happy, neutral, sad, surprise)
|
618 |
+
- **Voice Emotion Recognition**: LSTM-based model analyzing audio features
|
619 |
+
- **Real-time Monitoring**: Live emotion detection during consultations
|
620 |
+
- **Clinical Recommendations**: AI-generated insights for healthcare practitioners
|
621 |
+
|
622 |
+
π¬ **Technology Stack**: PyTorch, dlib, librosa, computer vision, deep learning
|
623 |
+
""")
|
624 |
+
|
625 |
+
with gr.Tabs():
|
626 |
+
# Main Analysis Tab
|
627 |
+
with gr.Tab("π¬ Consultation Analysis", elem_id="main-tab"):
|
628 |
+
gr.Markdown("### Upload consultation recordings for comprehensive AI-powered emotion analysis")
|
629 |
+
|
630 |
+
with gr.Row():
|
631 |
+
with gr.Column(scale=1):
|
632 |
+
video_input = gr.File(
|
633 |
+
label="πΉ Upload Video Recording",
|
634 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
635 |
+
type="filepath"
|
636 |
+
)
|
637 |
+
audio_input = gr.File(
|
638 |
+
label="π΅ Upload Audio Recording",
|
639 |
+
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
640 |
+
type="filepath"
|
641 |
+
)
|
642 |
+
analyze_btn = gr.Button(
|
643 |
+
"π Analyze with AI Models",
|
644 |
+
variant="primary",
|
645 |
+
size="lg",
|
646 |
+
scale=1
|
647 |
+
)
|
648 |
+
|
649 |
+
with gr.Column(scale=2):
|
650 |
+
recommendations_output = gr.Markdown(
|
651 |
+
label="π©Ί Clinical Recommendations",
|
652 |
+
value="Upload files and click 'Analyze' to get AI-powered clinical insights..."
|
653 |
+
)
|
654 |
+
|
655 |
+
with gr.Row():
|
656 |
+
timeline_plot = gr.Plot(label="π Emotion Timeline Analysis", height=500)
|
657 |
+
|
658 |
+
with gr.Row():
|
659 |
+
with gr.Column():
|
660 |
+
face_summary_plot = gr.Plot(label="π Facial Expression Summary")
|
661 |
+
with gr.Column():
|
662 |
+
voice_summary_plot = gr.Plot(label="π€ Voice Emotion Summary")
|
663 |
+
|
664 |
+
analyze_btn.click(
|
665 |
+
fn=process_consultation,
|
666 |
+
inputs=[video_input, audio_input],
|
667 |
+
outputs=[timeline_plot, face_summary_plot, voice_summary_plot, recommendations_output],
|
668 |
+
show_progress=True
|
669 |
)
|
670 |
+
|
671 |
+
# Real-time Tab
|
672 |
+
with gr.Tab("ποΈ Real-time Monitoring"):
|
673 |
+
gr.Markdown("""
|
674 |
+
### Live voice emotion analysis during consultation
|
675 |
+
*Click the microphone button and speak to see real-time emotion detection*
|
676 |
+
""")
|
677 |
+
|
678 |
+
with gr.Row():
|
679 |
+
with gr.Column(scale=1):
|
680 |
+
audio_realtime = gr.Audio(
|
681 |
+
sources=["microphone"],
|
682 |
+
type="numpy",
|
683 |
+
label="π€ Live Audio Input",
|
684 |
+
streaming=False
|
685 |
+
)
|
686 |
+
|
687 |
+
with gr.Column(scale=2):
|
688 |
+
realtime_output = gr.Markdown(
|
689 |
+
label="π Real-time Analysis Results",
|
690 |
+
value="π€ **Ready for real-time analysis**\n\nClick the microphone and speak to see live emotion detection using our AI models."
|
691 |
+
)
|
692 |
+
|
693 |
+
audio_realtime.change(
|
694 |
+
fn=real_time_analysis,
|
695 |
+
inputs=[audio_realtime],
|
696 |
+
outputs=[realtime_output]
|
697 |
)
|
698 |
+
|
699 |
+
# Technical Details Tab
|
700 |
+
with gr.Tab("π¬ Model & Technical Information"):
|
701 |
+
gr.Markdown(f"""
|
702 |
+
### AI Models & Architecture
|
703 |
+
|
704 |
+
**Current System Status:**
|
705 |
+
- π₯οΈ **Processing Device**: {analyzer.device}
|
706 |
+
- π§ **Facial Model**: Custom CNN (7 emotions)
|
707 |
+
- π΅ **Voice Model**: LSTM-based architecture (6 emotions)
|
708 |
+
- ποΈ **Face Detection**: dlib frontal face detector
|
709 |
+
- π **Audio Features**: MFCC, spectral features, pitch analysis
|
710 |
+
|
711 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|