create App.py
Browse files
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from fer import FER
|
7 |
+
import librosa
|
8 |
+
from python_speech_features import mfcc
|
9 |
+
import pandas as pd
|
10 |
+
from datetime import datetime
|
11 |
+
import time
|
12 |
+
from transformers import pipeline
|
13 |
+
|
14 |
+
# Initialize models
|
15 |
+
emotion_detector = FER(mtcnn=True) # Facial expression recognition
|
16 |
+
voice_classifier = pipeline("audio-classification", model="superb/hubert-base-superb-er")
|
17 |
+
|
18 |
+
# Global variables to store results
|
19 |
+
emotion_history = []
|
20 |
+
current_emotions = {"face": "Neutral", "voice": "Neutral"}
|
21 |
+
last_update_time = time.time()
|
22 |
+
|
23 |
+
# Preprocessing for face detection
|
24 |
+
transform = transforms.Compose([
|
25 |
+
transforms.ToPILImage(),
|
26 |
+
transforms.Resize((48, 48)),
|
27 |
+
transforms.Grayscale(),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
])
|
30 |
+
|
31 |
+
def analyze_face(frame):
|
32 |
+
"""Analyze facial expressions in the frame"""
|
33 |
+
try:
|
34 |
+
# Convert frame to RGB (FER expects RGB)
|
35 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
36 |
+
|
37 |
+
# Detect emotions
|
38 |
+
results = emotion_detector.detect_emotions(rgb_frame)
|
39 |
+
|
40 |
+
if results:
|
41 |
+
emotions = results[0]['emotions']
|
42 |
+
dominant_emotion = max(emotions, key=emotions.get)
|
43 |
+
return dominant_emotion, emotions
|
44 |
+
return "Neutral", {"angry": 0, "disgust": 0, "fear": 0, "happy": 0, "sad": 0, "surprise": 0, "neutral": 1}
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Face analysis error: {e}")
|
47 |
+
return "Neutral", {"angry": 0, "disgust": 0, "fear": 0, "happy": 0, "sad": 0, "surprise": 0, "neutral": 1}
|
48 |
+
|
49 |
+
def analyze_voice(audio):
|
50 |
+
"""Analyze voice tone from audio"""
|
51 |
+
try:
|
52 |
+
sr, y = audio
|
53 |
+
y = y.astype(np.float32)
|
54 |
+
|
55 |
+
# Convert to mono if stereo
|
56 |
+
if len(y.shape) > 1:
|
57 |
+
y = np.mean(y, axis=0)
|
58 |
+
|
59 |
+
# Resample to 16kHz if needed
|
60 |
+
if sr != 16000:
|
61 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
|
62 |
+
sr = 16000
|
63 |
+
|
64 |
+
# Classify emotion
|
65 |
+
result = voice_classifier({"sampling_rate": sr, "raw": y})
|
66 |
+
dominant_emotion = result[0]['label']
|
67 |
+
return dominant_emotion, result
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Voice analysis error: {e}")
|
70 |
+
return "neutral", [{"label": "neutral", "score": 1.0}]
|
71 |
+
|
72 |
+
def update_emotion_history(face_emotion, voice_emotion):
|
73 |
+
"""Update the emotion history and current emotions"""
|
74 |
+
global current_emotions, emotion_history, last_update_time
|
75 |
+
|
76 |
+
current_time = datetime.now().strftime("%H:%M:%S")
|
77 |
+
|
78 |
+
# Update current emotions
|
79 |
+
current_emotions = {
|
80 |
+
"face": face_emotion,
|
81 |
+
"voice": voice_emotion,
|
82 |
+
"timestamp": current_time
|
83 |
+
}
|
84 |
+
|
85 |
+
# Add to history (every 5 seconds or when emotion changes significantly)
|
86 |
+
if (time.time() - last_update_time) > 5 or not emotion_history:
|
87 |
+
emotion_history.append({
|
88 |
+
"timestamp": current_time,
|
89 |
+
"face": face_emotion,
|
90 |
+
"voice": voice_emotion
|
91 |
+
})
|
92 |
+
last_update_time = time.time()
|
93 |
+
|
94 |
+
# Keep only last 20 entries
|
95 |
+
if len(emotion_history) > 20:
|
96 |
+
emotion_history = emotion_history[-20:]
|
97 |
+
|
98 |
+
def get_emotion_timeline():
|
99 |
+
"""Create a timeline DataFrame for display"""
|
100 |
+
if not emotion_history:
|
101 |
+
return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
|
102 |
+
|
103 |
+
df = pd.DataFrame(emotion_history)
|
104 |
+
df = df.rename(columns={
|
105 |
+
"timestamp": "Time",
|
106 |
+
"face": "Facial Emotion",
|
107 |
+
"voice": "Voice Emotion"
|
108 |
+
})
|
109 |
+
return df
|
110 |
+
|
111 |
+
def get_practitioner_advice(face_emotion, voice_emotion):
|
112 |
+
"""Generate suggestions based on detected emotions"""
|
113 |
+
advice = []
|
114 |
+
|
115 |
+
# Facial emotion advice
|
116 |
+
if face_emotion in ["sad", "fear"]:
|
117 |
+
advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
|
118 |
+
elif face_emotion == "angry":
|
119 |
+
advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
|
120 |
+
elif face_emotion == "confused":
|
121 |
+
advice.append("Patient may not understand. Consider rephrasing or providing more explanation.")
|
122 |
+
elif face_emotion == "pain":
|
123 |
+
advice.append("Patient appears to be in pain. Consider asking about discomfort.")
|
124 |
+
|
125 |
+
# Voice emotion advice
|
126 |
+
if voice_emotion in ["sad", "fear"]:
|
127 |
+
advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
|
128 |
+
elif voice_emotion == "angry":
|
129 |
+
advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
|
130 |
+
elif voice_emotion == "happy":
|
131 |
+
advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
|
132 |
+
|
133 |
+
return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."
|
134 |
+
|
135 |
+
def process_input(video, audio):
|
136 |
+
"""Process video and audio inputs to detect emotions"""
|
137 |
+
try:
|
138 |
+
# Process video frame
|
139 |
+
if video is not None:
|
140 |
+
frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
|
141 |
+
face_emotion, face_details = analyze_face(frame)
|
142 |
+
else:
|
143 |
+
face_emotion, face_details = "Neutral", {}
|
144 |
+
|
145 |
+
# Process audio
|
146 |
+
if audio is not None:
|
147 |
+
voice_emotion, voice_details = analyze_voice(audio)
|
148 |
+
else:
|
149 |
+
voice_emotion, voice_details = "neutral", {}
|
150 |
+
|
151 |
+
# Update history and get outputs
|
152 |
+
update_emotion_history(face_emotion, voice_emotion)
|
153 |
+
timeline_df = get_emotion_timeline()
|
154 |
+
advice = get_practitioner_advice(face_emotion, voice_emotion)
|
155 |
+
|
156 |
+
# Prepare outputs
|
157 |
+
outputs = {
|
158 |
+
"current_face": face_emotion,
|
159 |
+
"current_voice": voice_emotion,
|
160 |
+
"timeline": timeline_df,
|
161 |
+
"advice": advice,
|
162 |
+
"face_details": str(face_details),
|
163 |
+
"voice_details": str(voice_details)
|
164 |
+
}
|
165 |
+
|
166 |
+
return outputs
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Processing error: {e}")
|
169 |
+
return {
|
170 |
+
"current_face": "Error",
|
171 |
+
"current_voice": "Error",
|
172 |
+
"timeline": pd.DataFrame(),
|
173 |
+
"advice": "System error occurred",
|
174 |
+
"face_details": "",
|
175 |
+
"voice_details": ""
|
176 |
+
}
|
177 |
+
|
178 |
+
# Gradio interface
|
179 |
+
with gr.Blocks(title="Patient Emotion Recognition", theme="soft") as demo:
|
180 |
+
gr.Markdown("# Real-Time Patient Emotion Recognition")
|
181 |
+
gr.Markdown("Analyze facial expressions and voice tone during medical consultations")
|
182 |
+
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
video_input = gr.Image(label="Live Camera Feed", source="webcam", streaming=True)
|
186 |
+
audio_input = gr.Audio(label="Voice Input", source="microphone", type="numpy")
|
187 |
+
submit_btn = gr.Button("Analyze Emotions")
|
188 |
+
|
189 |
+
with gr.Column():
|
190 |
+
current_face = gr.Textbox(label="Current Facial Emotion")
|
191 |
+
current_voice = gr.Textbox(label="Current Voice Emotion")
|
192 |
+
advice_output = gr.Textbox(label="Practitioner Suggestions", lines=3)
|
193 |
+
timeline_output = gr.Dataframe(label="Emotion Timeline", interactive=False)
|
194 |
+
face_details = gr.Textbox(label="Face Analysis Details", visible=False)
|
195 |
+
voice_details = gr.Textbox(label="Voice Analysis Details", visible=False)
|
196 |
+
|
197 |
+
# Live processing
|
198 |
+
video_input.change(
|
199 |
+
process_input,
|
200 |
+
inputs=[video_input, audio_input],
|
201 |
+
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
|
202 |
+
show_progress="hidden"
|
203 |
+
)
|
204 |
+
|
205 |
+
audio_input.change(
|
206 |
+
process_input,
|
207 |
+
inputs=[video_input, audio_input],
|
208 |
+
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
|
209 |
+
show_progress="hidden"
|
210 |
+
)
|
211 |
+
|
212 |
+
submit_btn.click(
|
213 |
+
process_input,
|
214 |
+
inputs=[video_input, audio_input],
|
215 |
+
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details]
|
216 |
+
)
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
demo.launch(debug=True)
|