update app
Browse files
app.py
CHANGED
@@ -4,13 +4,13 @@ import pyttsx3
|
|
4 |
import onnxruntime as ort
|
5 |
import librosa
|
6 |
import sounddevice as sd
|
7 |
-
import tempfile
|
8 |
import scipy.io.wavfile as wavfile
|
9 |
from sklearn.preprocessing import StandardScaler
|
10 |
import time
|
11 |
import os
|
12 |
from gtts import gTTS
|
13 |
import gradio as gr
|
|
|
14 |
|
15 |
# ------------------- Speech Emotion Recognition Model -------------------
|
16 |
class SpeechEmotionRecognizer:
|
@@ -19,11 +19,14 @@ class SpeechEmotionRecognizer:
|
|
19 |
self.input_name = self.model.get_inputs()[0].name
|
20 |
self.labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
21 |
|
|
|
|
|
|
|
22 |
def extract_features(self, y, sr):
|
23 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
24 |
mfcc_mean = np.mean(mfcc.T, axis=0)
|
25 |
-
scaler
|
26 |
-
mfcc_scaled =
|
27 |
return mfcc_scaled
|
28 |
|
29 |
def predict_emotion(self, audio_data, sr):
|
@@ -42,30 +45,23 @@ class FacialEmotionRecognizer:
|
|
42 |
|
43 |
def predict_emotion(self, face_img):
|
44 |
face_img = cv2.resize(face_img, (64, 64))
|
45 |
-
face_img = face_img.astype('float32') # FER+ expects float32
|
46 |
-
|
|
|
|
|
47 |
pred = self.model.run(None, {self.input_name: face_img})[0]
|
48 |
emotion_idx = np.argmax(pred)
|
49 |
return self.labels[emotion_idx]
|
50 |
|
51 |
# ------------------- Utility Functions -------------------
|
52 |
|
53 |
-
|
54 |
def speak(text):
|
55 |
if not text.strip():
|
56 |
return None
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
iface = gr.Interface(
|
62 |
-
fn=speak,
|
63 |
-
inputs=gr.Textbox(lines=2, label="Enter text"),
|
64 |
-
outputs=gr.Audio(type="filepath", label="Speech Output"),
|
65 |
-
title="Text to Speech"
|
66 |
-
)
|
67 |
-
|
68 |
-
iface.launch()
|
69 |
|
70 |
def record_audio(duration=3, fs=22050):
|
71 |
print("Recording audio...")
|
@@ -80,12 +76,11 @@ def analyze_face(face_roi, emotion_model):
|
|
80 |
return emotion
|
81 |
|
82 |
# ------------------- Main Function -------------------
|
|
|
83 |
def main():
|
84 |
-
# Load models
|
85 |
face_emotion_model = FacialEmotionRecognizer("emotion-ferplus-8.onnx")
|
86 |
-
speech_emotion_model = SpeechEmotionRecognizer("speech_emotion_model.onnx")
|
87 |
|
88 |
-
# Start webcam
|
89 |
cap = cv2.VideoCapture(0)
|
90 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
91 |
|
@@ -114,8 +109,11 @@ def main():
|
|
114 |
audio, sr = record_audio()
|
115 |
speech_emotion = speech_emotion_model.predict_emotion(audio, sr)
|
116 |
print(f"Speech Emotion: {speech_emotion}")
|
117 |
-
speak(f"You sound {speech_emotion}")
|
118 |
-
|
|
|
|
|
|
|
119 |
elif key == ord('q'):
|
120 |
break
|
121 |
|
|
|
4 |
import onnxruntime as ort
|
5 |
import librosa
|
6 |
import sounddevice as sd
|
|
|
7 |
import scipy.io.wavfile as wavfile
|
8 |
from sklearn.preprocessing import StandardScaler
|
9 |
import time
|
10 |
import os
|
11 |
from gtts import gTTS
|
12 |
import gradio as gr
|
13 |
+
import tempfile
|
14 |
|
15 |
# ------------------- Speech Emotion Recognition Model -------------------
|
16 |
class SpeechEmotionRecognizer:
|
|
|
19 |
self.input_name = self.model.get_inputs()[0].name
|
20 |
self.labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
21 |
|
22 |
+
# Load or create scaler here (fit on training data offline, then load)
|
23 |
+
self.scaler = StandardScaler()
|
24 |
+
|
25 |
def extract_features(self, y, sr):
|
26 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
27 |
mfcc_mean = np.mean(mfcc.T, axis=0)
|
28 |
+
# Normally, scaler should be pre-fitted, here we just scale manually to zero mean, unit var
|
29 |
+
mfcc_scaled = (mfcc_mean - np.mean(mfcc_mean)) / np.std(mfcc_mean)
|
30 |
return mfcc_scaled
|
31 |
|
32 |
def predict_emotion(self, audio_data, sr):
|
|
|
45 |
|
46 |
def predict_emotion(self, face_img):
|
47 |
face_img = cv2.resize(face_img, (64, 64))
|
48 |
+
face_img = face_img.astype('float32') # FER+ expects float32
|
49 |
+
# FER+ model expects input shape (1, 1, 64, 64)
|
50 |
+
face_img = np.expand_dims(face_img, axis=0) # (1, 64, 64)
|
51 |
+
face_img = np.expand_dims(face_img, axis=0) # (1, 1, 64, 64)
|
52 |
pred = self.model.run(None, {self.input_name: face_img})[0]
|
53 |
emotion_idx = np.argmax(pred)
|
54 |
return self.labels[emotion_idx]
|
55 |
|
56 |
# ------------------- Utility Functions -------------------
|
57 |
|
|
|
58 |
def speak(text):
|
59 |
if not text.strip():
|
60 |
return None
|
61 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmpfile:
|
62 |
+
tts = gTTS(text)
|
63 |
+
tts.save(tmpfile.name)
|
64 |
+
return tmpfile.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def record_audio(duration=3, fs=22050):
|
67 |
print("Recording audio...")
|
|
|
76 |
return emotion
|
77 |
|
78 |
# ------------------- Main Function -------------------
|
79 |
+
|
80 |
def main():
|
|
|
81 |
face_emotion_model = FacialEmotionRecognizer("emotion-ferplus-8.onnx")
|
82 |
+
speech_emotion_model = SpeechEmotionRecognizer("speech_emotion_model.onnx")
|
83 |
|
|
|
84 |
cap = cv2.VideoCapture(0)
|
85 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
86 |
|
|
|
109 |
audio, sr = record_audio()
|
110 |
speech_emotion = speech_emotion_model.predict_emotion(audio, sr)
|
111 |
print(f"Speech Emotion: {speech_emotion}")
|
112 |
+
audio_file = speak(f"You sound {speech_emotion}")
|
113 |
+
if audio_file:
|
114 |
+
# Play the TTS audio using cv2 or other player if needed
|
115 |
+
pass
|
116 |
+
|
117 |
elif key == ord('q'):
|
118 |
break
|
119 |
|