update app v3
Browse fileschanges due to uncompatible between deepface and tensorflow
app.py
CHANGED
|
@@ -5,12 +5,25 @@ import pandas as pd
|
|
| 5 |
from datetime import datetime
|
| 6 |
import time
|
| 7 |
from transformers import pipeline
|
| 8 |
-
from deepface import DeepFace
|
| 9 |
import librosa
|
| 10 |
from python_speech_features import mfcc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Initialize models
|
| 13 |
voice_classifier = pipeline("audio-classification", model="superb/hubert-base-superb-er")
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Global variables to store results
|
| 16 |
emotion_history = []
|
|
@@ -18,22 +31,38 @@ current_emotions = {"face": "neutral", "voice": "neutral"}
|
|
| 18 |
last_update_time = time.time()
|
| 19 |
|
| 20 |
def analyze_face(frame):
|
| 21 |
-
"""Analyze facial expressions in the frame using
|
| 22 |
try:
|
| 23 |
-
#
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return dominant_emotion, emotions
|
| 33 |
-
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
print(f"Face analysis error: {e}")
|
| 36 |
-
return "neutral", {
|
| 37 |
|
| 38 |
def analyze_voice(audio):
|
| 39 |
"""Analyze voice tone from audio"""
|
|
|
|
| 5 |
from datetime import datetime
|
| 6 |
import time
|
| 7 |
from transformers import pipeline
|
|
|
|
| 8 |
import librosa
|
| 9 |
from python_speech_features import mfcc
|
| 10 |
+
import onnxruntime as ort
|
| 11 |
+
import requests
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
# Download emotion recognition ONNX model
|
| 15 |
+
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
|
| 16 |
+
MODEL_PATH = "emotion-ferplus-8.onnx"
|
| 17 |
+
|
| 18 |
+
if not os.path.exists(MODEL_PATH):
|
| 19 |
+
response = requests.get(MODEL_URL)
|
| 20 |
+
with open(MODEL_PATH, "wb") as f:
|
| 21 |
+
f.write(response.content)
|
| 22 |
|
| 23 |
# Initialize models
|
| 24 |
voice_classifier = pipeline("audio-classification", model="superb/hubert-base-superb-er")
|
| 25 |
+
emotion_session = ort.InferenceSession(MODEL_PATH)
|
| 26 |
+
emotion_labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']
|
| 27 |
|
| 28 |
# Global variables to store results
|
| 29 |
emotion_history = []
|
|
|
|
| 31 |
last_update_time = time.time()
|
| 32 |
|
| 33 |
def analyze_face(frame):
|
| 34 |
+
"""Analyze facial expressions in the frame using ONNX model"""
|
| 35 |
try:
|
| 36 |
+
# Preprocess frame
|
| 37 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 38 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 39 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
| 40 |
|
| 41 |
+
if len(faces) > 0:
|
| 42 |
+
x, y, w, h = faces[0]
|
| 43 |
+
face_roi = gray[y:y+h, x:x+w]
|
| 44 |
+
face_roi = cv2.resize(face_roi, (64, 64))
|
| 45 |
+
face_roi = face_roi.astype('float32') / 255.0
|
| 46 |
+
face_roi = np.expand_dims(face_roi, axis=0)
|
| 47 |
+
face_roi = np.expand_dims(face_roi, axis=0)
|
| 48 |
+
|
| 49 |
+
# Run inference
|
| 50 |
+
input_name = emotion_session.get_inputs()[0].name
|
| 51 |
+
output_name = emotion_session.get_outputs()[0].name
|
| 52 |
+
results = emotion_session.run([output_name], {input_name: face_roi})[0]
|
| 53 |
+
|
| 54 |
+
# Get emotion probabilities
|
| 55 |
+
emotion_probs = results[0]
|
| 56 |
+
dominant_emotion = emotion_labels[np.argmax(emotion_probs)]
|
| 57 |
+
|
| 58 |
+
# Create emotion dictionary
|
| 59 |
+
emotions = {label: float(prob) for label, prob in zip(emotion_labels, emotion_probs)}
|
| 60 |
return dominant_emotion, emotions
|
| 61 |
+
|
| 62 |
+
return "neutral", {label: 0.0 for label in emotion_labels}
|
| 63 |
except Exception as e:
|
| 64 |
print(f"Face analysis error: {e}")
|
| 65 |
+
return "neutral", {label: 0.0 for label in emotion_labels}
|
| 66 |
|
| 67 |
def analyze_voice(audio):
|
| 68 |
"""Analyze voice tone from audio"""
|