app update
Browse files
app.py
CHANGED
@@ -1,350 +1,112 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
import cv2
|
4 |
-
import
|
5 |
-
|
6 |
-
import time
|
7 |
-
import librosa
|
8 |
-
import joblib
|
9 |
-
from python_speech_features import mfcc
|
10 |
import onnxruntime as ort
|
11 |
-
import
|
12 |
-
import
|
|
|
|
|
13 |
from sklearn.preprocessing import StandardScaler
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
]
|
20 |
-
|
21 |
-
VOICE_MODEL_PATH = "voice_emotion_model.pkl"
|
22 |
-
VOICE_SCALER_PATH = "voice_scaler.pkl"
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
def download_model(self):
|
32 |
-
for url in MODEL_URLS:
|
33 |
-
try:
|
34 |
-
print(f"Attempting to download model from: {url}")
|
35 |
-
response = requests.get(url, stream=True, timeout=30)
|
36 |
-
response.raise_for_status()
|
37 |
-
|
38 |
-
with open(MODEL_PATH, "wb") as f:
|
39 |
-
for chunk in response.iter_content(chunk_size=8192):
|
40 |
-
if chunk:
|
41 |
-
f.write(chunk)
|
42 |
-
|
43 |
-
if os.path.exists(MODEL_PATH):
|
44 |
-
print(f"Successfully downloaded model from {url}")
|
45 |
-
return True
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Download attempt failed from {url}: {str(e)}")
|
48 |
-
|
49 |
-
return False
|
50 |
-
|
51 |
-
def load_model(self):
|
52 |
-
if not os.path.exists(MODEL_PATH):
|
53 |
-
if not self.download_model():
|
54 |
-
print("Warning: Could not download emotion model. Using simple face detection only.")
|
55 |
-
self.session = None
|
56 |
-
return
|
57 |
-
|
58 |
-
try:
|
59 |
-
so = ort.SessionOptions()
|
60 |
-
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
61 |
-
self.session = ort.InferenceSession(MODEL_PATH, so)
|
62 |
-
print("Emotion model loaded successfully")
|
63 |
-
except Exception as e:
|
64 |
-
print(f"Failed to load ONNX model: {str(e)}")
|
65 |
-
self.session = None
|
66 |
-
|
67 |
-
def softmax(self, x):
|
68 |
-
e_x = np.exp(x - np.max(x))
|
69 |
-
return e_x / e_x.sum()
|
70 |
-
|
71 |
-
def predict(self, frame):
|
72 |
-
if self.session is None:
|
73 |
-
# Return dummy probabilities if model failed to load
|
74 |
-
base = np.array([0.7] + [0.1]*7)
|
75 |
-
variation = np.random.normal(0, 0.01, size=8)
|
76 |
-
return [np.clip(base + variation, 0, 1).reshape(1, -1)]
|
77 |
-
|
78 |
-
try:
|
79 |
-
raw_prediction = self.session.run(None, {'Input3': frame})[0][0]
|
80 |
-
self.emotion_buffer.append(raw_prediction)
|
81 |
-
|
82 |
-
if len(self.emotion_buffer) > 5:
|
83 |
-
self.emotion_buffer = self.emotion_buffer[-5:]
|
84 |
-
|
85 |
-
smoothed_probs = np.mean(self.emotion_buffer, axis=0)
|
86 |
-
return self.softmax(smoothed_probs).reshape(1, -1)
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Prediction error: {str(e)}")
|
89 |
-
return [np.array([[0.8] + [0.1]*7])] # Mostly neutral fallback
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
|
98 |
-
print("Loaded pretrained voice emotion model")
|
99 |
-
else:
|
100 |
-
raise FileNotFoundError("Pretrained voice model not found")
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Voice model loading failed: {str(e)}")
|
103 |
-
print("Using limited rule-based voice analysis")
|
104 |
-
self.model = None
|
105 |
-
self.scaler = StandardScaler()
|
106 |
-
dummy_features = np.random.randn(100, 18)
|
107 |
-
self.scaler.fit(dummy_features)
|
108 |
-
self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
|
109 |
-
|
110 |
-
def extract_features(self, audio):
|
111 |
-
try:
|
112 |
-
y, sr = audio
|
113 |
-
features = []
|
114 |
-
|
115 |
-
if len(y.shape) > 1:
|
116 |
-
y = np.mean(y, axis=0)
|
117 |
-
|
118 |
-
if sr != 16000:
|
119 |
-
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
|
120 |
-
sr = 16000
|
121 |
-
|
122 |
-
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
123 |
-
features.extend(np.mean(mfccs, axis=1))
|
124 |
-
features.extend(np.std(mfccs, axis=1))
|
125 |
-
|
126 |
-
pitches = librosa.yin(y, fmin=80, fmax=400)
|
127 |
-
features.append(np.nanmean(pitches))
|
128 |
-
features.append(np.nanstd(pitches))
|
129 |
-
|
130 |
-
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
|
131 |
-
features.append(np.mean(spectral_centroid))
|
132 |
-
|
133 |
-
return np.array(features)
|
134 |
-
except Exception as e:
|
135 |
-
print(f"Feature extraction error: {str(e)}")
|
136 |
-
return np.zeros(18) if self.model else np.zeros(13)
|
137 |
-
|
138 |
-
def predict(self, audio):
|
139 |
-
try:
|
140 |
-
features = self.extract_features(audio).reshape(1, -1)
|
141 |
-
features = self.scaler.transform(features)
|
142 |
-
|
143 |
-
if self.model:
|
144 |
-
probs = self.model.predict_proba(features)[0]
|
145 |
-
emotion = self.labels[np.argmax(probs)]
|
146 |
-
details = [{"label": l, "score": p} for l, p in zip(self.labels, probs)]
|
147 |
-
else:
|
148 |
-
if features[0, 0] > 1.0:
|
149 |
-
emotion = "happy"
|
150 |
-
details = [{"label": "happy", "score": 0.8}]
|
151 |
-
elif features[0, 0] < -1.0:
|
152 |
-
emotion = "sad"
|
153 |
-
details = [{"label": "sad", "score": 0.7}]
|
154 |
-
elif abs(features[0, 1]) > 0.8:
|
155 |
-
emotion = "angry"
|
156 |
-
details = [{"label": "angry", "score": 0.6}]
|
157 |
-
else:
|
158 |
-
emotion = "neutral"
|
159 |
-
details = [{"label": "neutral", "score": 0.9}]
|
160 |
-
|
161 |
-
return emotion, details
|
162 |
-
except Exception as e:
|
163 |
-
print(f"Voice prediction error: {str(e)}")
|
164 |
-
return "neutral", [{"label": "neutral", "score": 1.0}]
|
165 |
|
166 |
-
#
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
def
|
177 |
-
"
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
if len(faces) > 0:
|
184 |
-
x, y, w, h = faces[0]
|
185 |
-
face_roi = gray[y:y+h, x:x+w]
|
186 |
-
|
187 |
-
# Correct preprocessing for FER+ model
|
188 |
-
face_roi = cv2.resize(face_roi, (64, 64))
|
189 |
-
face_roi = face_roi.astype('float32')
|
190 |
-
face_roi = (face_roi - 127.5) / 127.5 # Normalize to [-1, 1] range
|
191 |
-
face_roi = np.expand_dims(face_roi, axis=(0, 1))
|
192 |
-
|
193 |
-
results = emotion_model.predict(face_roi)
|
194 |
-
emotion_probs = results[0]
|
195 |
-
|
196 |
-
# Only accept predictions with confidence > 0.5
|
197 |
-
if np.max(emotion_probs) < 0.5:
|
198 |
-
return "uncertain", {label: 0.0 for label in emotion_model.labels}
|
199 |
-
|
200 |
-
dominant_emotion = emotion_model.labels[np.argmax(emotion_probs)]
|
201 |
-
emotions = {label: float(prob) for label, prob in zip(emotion_model.labels, emotion_probs)}
|
202 |
-
return dominant_emotion, emotions
|
203 |
-
|
204 |
-
return "neutral", {label: 0.0 for label in emotion_model.labels}
|
205 |
-
except Exception as e:
|
206 |
-
print(f"Face analysis error: {str(e)}")
|
207 |
-
return "neutral", {label: 0.0 for label in emotion_model.labels}
|
208 |
|
209 |
-
def
|
210 |
-
|
211 |
-
return
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
current_emotions = {
|
219 |
-
"face": face_emotion,
|
220 |
-
"voice": voice_emotion,
|
221 |
-
"timestamp": current_time
|
222 |
-
}
|
223 |
-
|
224 |
-
if (time.time() - last_update_time) > 5 or not emotion_history:
|
225 |
-
emotion_history.append(current_emotions.copy())
|
226 |
-
last_update_time = time.time()
|
227 |
-
|
228 |
-
if len(emotion_history) > 20:
|
229 |
-
emotion_history = emotion_history[-20:]
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
|
235 |
-
|
236 |
-
df = pd.DataFrame(emotion_history)
|
237 |
-
df = df.rename(columns={
|
238 |
-
"timestamp": "Time",
|
239 |
-
"face": "Facial Emotion",
|
240 |
-
"voice": "Voice Emotion"
|
241 |
-
})
|
242 |
-
return df
|
243 |
|
244 |
-
|
245 |
-
"""Generate suggestions based on detected emotions"""
|
246 |
-
advice = []
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
elif face_emotion == "disgust":
|
254 |
-
advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
|
255 |
-
elif face_emotion == "surprise":
|
256 |
-
advice.append("Patient seems surprised. Ensure they understand all information.")
|
257 |
-
elif face_emotion == "uncertain":
|
258 |
-
advice.append("Facial expression unclear. Pay closer attention to verbal cues.")
|
259 |
-
|
260 |
-
# Voice emotion advice
|
261 |
-
if voice_emotion in ["sad", "fear"]:
|
262 |
-
advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
|
263 |
-
elif voice_emotion == "angry":
|
264 |
-
advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
|
265 |
-
elif voice_emotion == "happy":
|
266 |
-
advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
|
267 |
-
|
268 |
-
return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
try:
|
273 |
-
# Process video frame
|
274 |
-
if video is not None:
|
275 |
-
frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
|
276 |
-
face_emotion, face_details = analyze_face(frame)
|
277 |
-
else:
|
278 |
-
face_emotion, face_details = "neutral", {}
|
279 |
-
|
280 |
-
# Process audio
|
281 |
-
if audio is not None:
|
282 |
-
voice_emotion, voice_details = analyze_voice(audio)
|
283 |
-
else:
|
284 |
-
voice_emotion, voice_details = "neutral", {}
|
285 |
-
|
286 |
-
update_emotion_history(face_emotion, voice_emotion)
|
287 |
-
timeline_df = get_emotion_timeline()
|
288 |
-
advice = get_practitioner_advice(face_emotion, voice_emotion)
|
289 |
-
|
290 |
-
return (
|
291 |
-
face_emotion,
|
292 |
-
voice_emotion,
|
293 |
-
timeline_df,
|
294 |
-
advice,
|
295 |
-
str(face_details),
|
296 |
-
str(voice_details)
|
297 |
-
)
|
298 |
-
except Exception as e:
|
299 |
-
print(f"Processing error: {str(e)}")
|
300 |
-
return (
|
301 |
-
"Error",
|
302 |
-
"Error",
|
303 |
-
pd.DataFrame(),
|
304 |
-
"System error occurred",
|
305 |
-
"",
|
306 |
-
""
|
307 |
-
)
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
face_details = gr.Textbox(label="Face Analysis Details", visible=False)
|
326 |
-
voice_details = gr.Textbox(label="Voice Analysis Details", visible=False)
|
327 |
-
|
328 |
-
# Live processing
|
329 |
-
video_input.change(
|
330 |
-
process_input,
|
331 |
-
inputs=[video_input, audio_input],
|
332 |
-
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
|
333 |
-
show_progress="hidden"
|
334 |
-
)
|
335 |
-
|
336 |
-
audio_input.change(
|
337 |
-
process_input,
|
338 |
-
inputs=[video_input, audio_input],
|
339 |
-
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
|
340 |
-
show_progress="hidden"
|
341 |
-
)
|
342 |
-
|
343 |
-
submit_btn.click(
|
344 |
-
process_input,
|
345 |
-
inputs=[video_input, audio_input],
|
346 |
-
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details]
|
347 |
-
)
|
348 |
|
349 |
if __name__ == "__main__":
|
350 |
-
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import pyttsx3
|
|
|
|
|
|
|
|
|
4 |
import onnxruntime as ort
|
5 |
+
import librosa
|
6 |
+
import sounddevice as sd
|
7 |
+
import tempfile
|
8 |
+
import scipy.io.wavfile as wavfile
|
9 |
from sklearn.preprocessing import StandardScaler
|
10 |
+
import time
|
11 |
+
import os
|
12 |
|
13 |
+
# ------------------- Speech Emotion Recognition Model -------------------
|
14 |
+
class SpeechEmotionRecognizer:
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.model = ort.InferenceSession(model_path)
|
17 |
+
self.input_name = self.model.get_inputs()[0].name
|
18 |
+
self.labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
|
|
|
|
19 |
|
20 |
+
def extract_features(self, y, sr):
|
21 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
22 |
+
mfcc_mean = np.mean(mfcc.T, axis=0)
|
23 |
+
scaler = StandardScaler()
|
24 |
+
mfcc_scaled = scaler.fit_transform(mfcc_mean.reshape(-1, 1)).flatten()
|
25 |
+
return mfcc_scaled
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def predict_emotion(self, audio_data, sr):
|
28 |
+
features = self.extract_features(audio_data, sr)
|
29 |
+
input_data = features.reshape(1, -1).astype(np.float32)
|
30 |
+
pred = self.model.run(None, {self.input_name: input_data})[0]
|
31 |
+
emotion_idx = np.argmax(pred)
|
32 |
+
return self.labels[emotion_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# ------------------- Facial Emotion Recognition Model -------------------
|
35 |
+
class FacialEmotionRecognizer:
|
36 |
+
def __init__(self, model_path):
|
37 |
+
self.model = ort.InferenceSession(model_path)
|
38 |
+
self.input_name = self.model.get_inputs()[0].name
|
39 |
+
self.labels = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt']
|
40 |
|
41 |
+
def predict_emotion(self, face_img):
|
42 |
+
face_img = cv2.resize(face_img, (64, 64))
|
43 |
+
face_img = face_img.astype('float32') # FER+ expects float32 in [0,255]
|
44 |
+
face_img = np.expand_dims(face_img, axis=(0, 1)) # Shape: (1, 1, 64, 64)
|
45 |
+
pred = self.model.run(None, {self.input_name: face_img})[0]
|
46 |
+
emotion_idx = np.argmax(pred)
|
47 |
+
return self.labels[emotion_idx]
|
48 |
|
49 |
+
# ------------------- Utility Functions -------------------
|
50 |
+
def speak(text):
|
51 |
+
engine = pyttsx3.init()
|
52 |
+
engine.setProperty('rate', 150)
|
53 |
+
engine.say(text)
|
54 |
+
engine.runAndWait()
|
55 |
|
56 |
+
def record_audio(duration=3, fs=22050):
|
57 |
+
print("Recording audio...")
|
58 |
+
audio = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='float32')
|
59 |
+
sd.wait()
|
60 |
+
audio = audio.flatten()
|
61 |
+
print("Recording complete.")
|
62 |
+
return audio, fs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def analyze_face(face_roi, emotion_model):
|
65 |
+
emotion = emotion_model.predict_emotion(face_roi)
|
66 |
+
return emotion
|
67 |
|
68 |
+
# ------------------- Main Function -------------------
|
69 |
+
def main():
|
70 |
+
# Load models
|
71 |
+
face_emotion_model = FacialEmotionRecognizer("emotion-ferplus-8.onnx")
|
72 |
+
speech_emotion_model = SpeechEmotionRecognizer("speech_emotion_model.onnx") # Replace with your .onnx model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Start webcam
|
75 |
+
cap = cv2.VideoCapture(0)
|
76 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
print("Press 's' to speak and 'q' to quit.")
|
|
|
|
|
79 |
|
80 |
+
while True:
|
81 |
+
ret, frame = cap.read()
|
82 |
+
if not ret:
|
83 |
+
print("Failed to grab frame.")
|
84 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
87 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
for (x, y, w, h) in faces:
|
90 |
+
face_roi = gray[y:y+h, x:x+w]
|
91 |
+
emotion = analyze_face(face_roi, face_emotion_model)
|
92 |
+
label = f"Face: {emotion}"
|
93 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
94 |
+
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
95 |
+
|
96 |
+
cv2.imshow("Emotion Recognition", frame)
|
97 |
+
key = cv2.waitKey(1) & 0xFF
|
98 |
+
|
99 |
+
if key == ord('s'):
|
100 |
+
audio, sr = record_audio()
|
101 |
+
speech_emotion = speech_emotion_model.predict_emotion(audio, sr)
|
102 |
+
print(f"Speech Emotion: {speech_emotion}")
|
103 |
+
speak(f"You sound {speech_emotion}")
|
104 |
|
105 |
+
elif key == ord('q'):
|
106 |
+
break
|
107 |
+
|
108 |
+
cap.release()
|
109 |
+
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
+
main()
|