Spaces:
Sleeping
Sleeping
Upload app.py and requirements.txt
Browse files- app.py +261 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import traceback
|
7 |
+
from pathlib import Path
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Global variables to store detector
|
12 |
+
detector = None
|
13 |
+
detector_loaded = False
|
14 |
+
|
15 |
+
def load_video_detector():
|
16 |
+
"""Load FER detector with error handling"""
|
17 |
+
global detector, detector_loaded
|
18 |
+
|
19 |
+
if detector_loaded:
|
20 |
+
return detector
|
21 |
+
|
22 |
+
try:
|
23 |
+
from fer import FER
|
24 |
+
detector = FER(mtcnn=True)
|
25 |
+
detector_loaded = True
|
26 |
+
return detector
|
27 |
+
except ImportError as e:
|
28 |
+
raise Exception(f"Failed to import FER: {e}")
|
29 |
+
except Exception as e:
|
30 |
+
raise Exception(f"Failed to initialize FER detector: {e}")
|
31 |
+
|
32 |
+
def analyze_video_emotions(video_path, progress=gr.Progress()):
|
33 |
+
"""Analyze emotions in video with robust error handling"""
|
34 |
+
global detector
|
35 |
+
|
36 |
+
if detector is None:
|
37 |
+
try:
|
38 |
+
detector = load_video_detector()
|
39 |
+
except Exception as e:
|
40 |
+
return f"Error loading detector: {str(e)}", None, None, None
|
41 |
+
|
42 |
+
try:
|
43 |
+
cap = cv2.VideoCapture(str(video_path))
|
44 |
+
|
45 |
+
# Check if video opened successfully
|
46 |
+
if not cap.isOpened():
|
47 |
+
return "Could not open video file", None, None, None
|
48 |
+
|
49 |
+
emotions = []
|
50 |
+
frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
|
51 |
+
|
52 |
+
# Handle cases where frame rate detection fails
|
53 |
+
if frame_rate <= 0:
|
54 |
+
frame_rate = 30
|
55 |
+
|
56 |
+
frame_interval = max(1, frame_rate * 2) # analyze every 2 seconds
|
57 |
+
frame_count = 0
|
58 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
59 |
+
|
60 |
+
progress(0, desc="Starting analysis...")
|
61 |
+
|
62 |
+
while cap.isOpened():
|
63 |
+
ret, frame = cap.read()
|
64 |
+
if not ret:
|
65 |
+
break
|
66 |
+
|
67 |
+
if frame_count % frame_interval == 0:
|
68 |
+
progress_val = frame_count / total_frames if total_frames > 0 else 0
|
69 |
+
progress(progress_val, desc=f"Analyzing frame {frame_count}/{total_frames}")
|
70 |
+
|
71 |
+
try:
|
72 |
+
results = detector.detect_emotions(frame)
|
73 |
+
if results and len(results) > 0:
|
74 |
+
top_emotion = max(results[0]["emotions"], key=results[0]["emotions"].get)
|
75 |
+
emotions.append(top_emotion)
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Warning: Error analyzing frame {frame_count}: {e}")
|
78 |
+
continue
|
79 |
+
|
80 |
+
frame_count += 1
|
81 |
+
|
82 |
+
cap.release()
|
83 |
+
|
84 |
+
if not emotions:
|
85 |
+
return "No faces or emotions detected in the video. Try uploading a video with clear facial expressions.", None, None, None
|
86 |
+
|
87 |
+
# Process results
|
88 |
+
emotion_counts = pd.Series(emotions).value_counts().to_dict()
|
89 |
+
|
90 |
+
# Create results text
|
91 |
+
total_detections = sum(emotion_counts.values())
|
92 |
+
results_text = "**Analysis completed!**\n\n**Detected Emotions:**\n\n"
|
93 |
+
|
94 |
+
for emo, count in emotion_counts.items():
|
95 |
+
percentage = (count / total_detections) * 100
|
96 |
+
results_text += f"- **{emo.title()}**: {count} detections ({percentage:.1f}%)\n"
|
97 |
+
|
98 |
+
# Dominant emotion
|
99 |
+
dominant_emotion = max(emotion_counts, key=emotion_counts.get)
|
100 |
+
results_text += f"\n**Dominant emotion detected**: {dominant_emotion.title()}"
|
101 |
+
|
102 |
+
# Create visualization
|
103 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
104 |
+
emotions_list = list(emotion_counts.keys())
|
105 |
+
counts_list = list(emotion_counts.values())
|
106 |
+
|
107 |
+
bars = ax.bar(emotions_list, counts_list, color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8'])
|
108 |
+
ax.set_xlabel('Emotions')
|
109 |
+
ax.set_ylabel('Number of Detections')
|
110 |
+
ax.set_title('Emotion Distribution in Video')
|
111 |
+
|
112 |
+
# Add value labels on bars
|
113 |
+
for bar in bars:
|
114 |
+
height = bar.get_height()
|
115 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
116 |
+
f'{int(height)}',
|
117 |
+
ha='center', va='bottom')
|
118 |
+
|
119 |
+
plt.xticks(rotation=45)
|
120 |
+
plt.tight_layout()
|
121 |
+
|
122 |
+
return results_text, fig, emotion_counts, dominant_emotion
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
error_msg = f"Error during video analysis: {e}\nTraceback: {traceback.format_exc()}"
|
126 |
+
return error_msg, None, None, None
|
127 |
+
|
128 |
+
def process_video(video_file):
|
129 |
+
"""Main processing function for Gradio interface"""
|
130 |
+
if video_file is None:
|
131 |
+
return "Please upload a video file to analyze facial emotions.", None
|
132 |
+
|
133 |
+
# Get file info
|
134 |
+
file_size = os.path.getsize(video_file) / (1024 * 1024) # MB
|
135 |
+
file_info = f"File uploaded successfully: {os.path.basename(video_file)}\nFile size: {file_size:.2f} MB\n\nAnalyzing facial emotions in video... This may take a few minutes.\n\n"
|
136 |
+
|
137 |
+
try:
|
138 |
+
results_text, plot, emotion_counts, dominant_emotion = analyze_video_emotions(video_file)
|
139 |
+
return file_info + results_text, plot
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
error_msg = f"Analysis failed: {e}\nPlease try with a different video file or check the file format."
|
143 |
+
return file_info + error_msg, None
|
144 |
+
|
145 |
+
def create_interface():
|
146 |
+
"""Create the Gradio interface"""
|
147 |
+
|
148 |
+
# Custom CSS for better styling
|
149 |
+
css = """
|
150 |
+
.gradio-container {
|
151 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
152 |
+
}
|
153 |
+
.main-header {
|
154 |
+
text-align: center;
|
155 |
+
color: #2c3e50;
|
156 |
+
margin-bottom: 2rem;
|
157 |
+
}
|
158 |
+
"""
|
159 |
+
|
160 |
+
with gr.Blocks(css=css, title="Video Emotion Detection", theme=gr.themes.Soft()) as iface:
|
161 |
+
|
162 |
+
# Header
|
163 |
+
gr.HTML("""
|
164 |
+
<div class="main-header">
|
165 |
+
<h1>😊 Video Emotion Detection</h1>
|
166 |
+
<p>Upload a video file to analyze facial emotions using advanced AI</p>
|
167 |
+
</div>
|
168 |
+
""")
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
# File upload
|
173 |
+
video_input = gr.File(
|
174 |
+
label="Choose a video file",
|
175 |
+
file_types=[".mp4", ".avi", ".mov"],
|
176 |
+
type="filepath"
|
177 |
+
)
|
178 |
+
|
179 |
+
# Process button
|
180 |
+
process_btn = gr.Button("Analyze Video", variant="primary", size="lg")
|
181 |
+
|
182 |
+
# Info section
|
183 |
+
with gr.Accordion("ℹ️ About this app", open=False):
|
184 |
+
gr.Markdown("""
|
185 |
+
### How it works:
|
186 |
+
- **Facial Detection**: Uses MTCNN for face detection
|
187 |
+
- **Emotion Recognition**: Analyzes facial expressions using FER (Facial Emotion Recognition)
|
188 |
+
- **Sampling**: Analyzes frames every 2 seconds for efficiency
|
189 |
+
- **Supported Formats**: MP4, AVI, MOV
|
190 |
+
|
191 |
+
### Tips for best results:
|
192 |
+
- Use videos with clear, well-lit faces
|
193 |
+
- Ensure faces are not too small in the frame
|
194 |
+
- Videos with multiple people will analyze all detected faces
|
195 |
+
- Shorter videos (< 5 minutes) process faster
|
196 |
+
""")
|
197 |
+
|
198 |
+
with gr.Column(scale=2):
|
199 |
+
# Results section
|
200 |
+
results_output = gr.Textbox(
|
201 |
+
label="Analysis Results",
|
202 |
+
lines=15,
|
203 |
+
max_lines=20,
|
204 |
+
interactive=False,
|
205 |
+
placeholder="Upload a video and click 'Analyze Video' to see results here..."
|
206 |
+
)
|
207 |
+
|
208 |
+
# Plot output
|
209 |
+
plot_output = gr.Plot(label="Emotion Distribution Chart")
|
210 |
+
|
211 |
+
# Event handlers
|
212 |
+
process_btn.click(
|
213 |
+
fn=process_video,
|
214 |
+
inputs=[video_input],
|
215 |
+
outputs=[results_output, plot_output],
|
216 |
+
show_progress=True
|
217 |
+
)
|
218 |
+
|
219 |
+
# Auto-process when file is uploaded (optional)
|
220 |
+
video_input.change(
|
221 |
+
fn=lambda x: ("Video uploaded successfully! Click 'Analyze Video' to start processing." if x else "", None),
|
222 |
+
inputs=[video_input],
|
223 |
+
outputs=[results_output, plot_output]
|
224 |
+
)
|
225 |
+
|
226 |
+
# Footer
|
227 |
+
gr.HTML("""
|
228 |
+
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background-color: #f8f9fa; border-radius: 0.5rem;">
|
229 |
+
<p><strong>Video Emotion Detection App</strong> - Powered by FER and MTCNN</p>
|
230 |
+
<p>Upload your video files and get detailed emotion analysis with visualizations</p>
|
231 |
+
</div>
|
232 |
+
""")
|
233 |
+
|
234 |
+
return iface
|
235 |
+
|
236 |
+
def main():
|
237 |
+
"""Main function to launch the app"""
|
238 |
+
# Initialize detector on startup
|
239 |
+
try:
|
240 |
+
print("Loading emotion detection model...")
|
241 |
+
load_video_detector()
|
242 |
+
print("Model loaded successfully!")
|
243 |
+
except Exception as e:
|
244 |
+
print(f"Warning: Could not pre-load detector: {e}")
|
245 |
+
print("Detector will be loaded when first video is processed.")
|
246 |
+
|
247 |
+
# Create and launch interface
|
248 |
+
iface = create_interface()
|
249 |
+
|
250 |
+
# Launch the app
|
251 |
+
iface.launch(
|
252 |
+
server_name="0.0.0.0", # Allow external access
|
253 |
+
server_port=7860, # Default Gradio port
|
254 |
+
share=False, # Set to True to create public link
|
255 |
+
debug=False,
|
256 |
+
show_error=True,
|
257 |
+
inbrowser=True # Auto-open in browser
|
258 |
+
)
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
opencv-python-headless==4.8.1.78
|
3 |
+
pandas>=1.5.0
|
4 |
+
matplotlib>=3.6.0
|
5 |
+
fer>=22.5.1
|
6 |
+
tensorflow>=2.10.0
|
7 |
+
numpy>=1.21.0
|
8 |
+
Pillow>=9.0.0
|
9 |
+
mtcnn>=0.1.1
|