Spaces:
Sleeping
Sleeping
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import process_images, tokenizer_image_token | |
from transformers import AutoTokenizer | |
import torch | |
class LLaVAHelper: | |
def __init__(self, model_name="llava-hf/llava-1.5-7b-hf"): | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model, self.image_processor, _ = load_pretrained_model(model_name, None) | |
self.model.eval() | |
def generate_answer(self, image, question): | |
# Preprocess | |
image_tensor = process_images([image], self.image_processor, self.model.config)[0].unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu") | |
prompt = f"###Human: <image>\n{question}\n###Assistant:" | |
input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
with torch.no_grad(): | |
output_ids = self.model.generate( | |
input_ids=input_ids.input_ids, | |
images=image_tensor, | |
max_new_tokens=512 | |
) | |
output = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return output.split("###Assistant:")[-1].strip() | |