transport_query_assistant / llava_inference.py
yunusajib's picture
model
422a1d6 verified
raw
history blame
1.21 kB
from llava.model.builder import load_pretrained_model
from llava.mm_utils import process_images, tokenizer_image_token
from transformers import AutoTokenizer
import torch
class LLaVAHelper:
def __init__(self, model_name="llava-hf/llava-1.5-7b-hf"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model, self.image_processor, _ = load_pretrained_model(model_name, None)
self.model.eval()
def generate_answer(self, image, question):
# Preprocess
image_tensor = process_images([image], self.image_processor, self.model.config)[0].unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu")
prompt = f"###Human: <image>\n{question}\n###Assistant:"
input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
output_ids = self.model.generate(
input_ids=input_ids.input_ids,
images=image_tensor,
max_new_tokens=512
)
output = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output.split("###Assistant:")[-1].strip()