yapayzeka / app.py
yusuf
aeayüz düzenleme 2
d08d609
raw
history blame
18.6 kB
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
from leffa_utils.densepose_predictor import DensePosePredictor
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
import gradio as gr
# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
class LeffaPredictor(object):
def __init__(self):
self.mask_predictor = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
self.densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
self.parsing = Parsing(
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
)
self.openpose = OpenPose(
body_model_path="./ckpts/openpose/body_pose_model.pth",
)
vt_model_hd = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon.pth",
dtype="float16",
)
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
vt_model_dc = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon_dc.pth",
dtype="float16",
)
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
pt_model = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
pretrained_model="./ckpts/pose_transfer.pth",
dtype="float16",
)
self.pt_inference = LeffaInference(model=pt_model)
def leffa_predict(
self,
src_image_path,
ref_image_path,
control_type,
ref_acceleration=False,
step=50,
scale=2.5,
seed=42,
vt_model_type="viton_hd",
vt_garment_type="upper_body",
vt_repaint=False
):
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
src_image = Image.open(src_image_path)
ref_image = Image.open(ref_image_path)
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
# Mask
if control_type == "virtual_tryon":
src_image = src_image.convert("RGB")
model_parse, _ = self.parsing(src_image.resize((384, 512)))
keypoints = self.openpose(src_image.resize((384, 512)))
if vt_model_type == "viton_hd":
mask = get_agnostic_mask_hd(
model_parse, keypoints, vt_garment_type)
elif vt_model_type == "dress_code":
mask = get_agnostic_mask_dc(
model_parse, keypoints, vt_garment_type)
mask = mask.resize((768, 1024))
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
src_image_seg_array = self.densepose_predictor.predict_seg(
src_image_array)[:, :, ::-1]
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif vt_model_type == "dress_code":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
src_image_seg_array = np.concatenate(
[src_image_seg_array] * 3, axis=-1)
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif control_type == "pose_transfer":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)[:, :, ::-1]
src_image_iuv = Image.fromarray(src_image_iuv_array)
densepose = src_image_iuv
# Leffa
transform = LeffaTransform()
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
inference = self.vt_inference_hd
elif vt_model_type == "dress_code":
inference = self.vt_inference_dc
elif control_type == "pose_transfer":
inference = self.pt_inference
output = inference(
data,
ref_acceleration=ref_acceleration,
num_inference_steps=step,
guidance_scale=scale,
seed=seed,
repaint=vt_repaint,)
gen_image = output["generated_image"][0]
return np.array(gen_image), np.array(mask), np.array(densepose)
def dehasoft(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
if __name__ == "__main__":
leffa_predictor = LeffaPredictor()
example_dir = "./ckpts/examples"
person1_images = list_dir(f"{example_dir}/person1")
person2_images = list_dir(f"{example_dir}/person2")
garment_images = list_dir(f"{example_dir}/garment")
# Özelleştirilmiş Tema
theme = gr.themes.Soft(
primary_hue="indigo",
secondary_hue="purple",
neutral_hue="gray",
radius_size="lg",
text_size="lg",
spacing_size="md",
).set(
body_background_fill="#f5f5f5",
background_fill_primary="#ffffff",
button_primary_background_fill="#4f46e5",
button_primary_background_fill_hover="#6b7280",
button_primary_text_color="#ffffff",
shadow="0 4px 6px rgba(0, 0, 0, 0.1)",
)
# Başlık ve Açıklama
title = "# Dehasoft AI Studio"
description = """
Welcome to **Dehasoft AI Studio**! Transform appearances with virtual try-on or adjust poses with pose transfer using cutting-edge AI models.
Powered by VITON-HD, DressCode, and DeepFashion datasets.
"""
footer_note = """
**Note:** Models are trained on academic datasets only. Virtual try-on leverages VITON-HD/DressCode, while pose transfer uses DeepFashion.
"""
with gr.Blocks(theme=theme, title="Dehasoft AI Studio") as demo:
gr.Markdown(title, elem_classes=["title"])
gr.Markdown(description, elem_classes=["description"])
with gr.Tabs(elem_classes=["tabs"]):
with gr.TabItem("Virtual Try-On", elem_id="vt_tab"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### Upload Person Image", elem_classes=["section-title"])
vt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
interactive=True,
height=400,
elem_classes=["image-upload"],
)
gr.Examples(
examples=person1_images,
inputs=vt_src_image,
examples_per_page=5,
elem_classes=["examples"],
)
with gr.Column(scale=1):
gr.Markdown("### Upload Garment Image", elem_classes=["section-title"])
vt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Garment Image",
interactive=True,
height=400,
elem_classes=["image-upload"],
)
gr.Examples(
examples=garment_images,
inputs=vt_ref_image,
examples_per_page=5,
elem_classes=["examples"],
)
with gr.Column(scale=1):
gr.Markdown("### Result", elem_classes=["section-title"])
vt_gen_image = gr.Image(
label="Generated Image",
height=400,
elem_classes=["image-output"],
)
vt_gen_button = gr.Button(
"Generate Image",
variant="primary",
size="lg",
elem_classes=["generate-btn"],
)
with gr.Accordion("Advanced Settings", open=False, elem_classes=["accordion"]):
vt_model_type = gr.Radio(
label="Model Type",
choices=[("VITON-HD (Recommended)", "viton_hd"), ("DressCode (Experimental)", "dress_code")],
value="viton_hd",
elem_classes=["radio"],
)
vt_garment_type = gr.Radio(
label="Garment Type",
choices=[("Upper", "upper_body"), ("Lower", "lower_body"), ("Dress", "dresses")],
value="upper_body",
elem_classes=["radio"],
)
vt_ref_acceleration = gr.Checkbox(
label="Accelerate Reference UNet",
value=False,
elem_classes=["checkbox"],
)
vt_repaint = gr.Checkbox(
label="Repaint Mode",
value=False,
elem_classes=["checkbox"],
)
vt_step = gr.Slider(
label="Inference Steps",
minimum=30,
maximum=100,
step=1,
value=30,
elem_classes=["slider"],
)
vt_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=5.0,
step=0.1,
value=2.5,
elem_classes=["slider"],
)
vt_seed = gr.Number(
label="Random Seed",
minimum=-1,
maximum=2147483647,
step=1,
value=42,
elem_classes=["number"],
)
with gr.Accordion("Debug Info", open=False, elem_classes=["accordion"]):
vt_mask = gr.Image(label="Generated Mask", height=200)
vt_densepose = gr.Image(label="Generated DensePose", height=200)
vt_gen_button.click(
fn=leffa_predictor.dehasoft,
inputs=[vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint],
outputs=[vt_gen_image, vt_mask, vt_densepose],
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
)
with gr.TabItem("Pose Transfer", elem_id="pt_tab"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### Source Person Image", elem_classes=["section-title"])
pt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
interactive=True,
height=400,
elem_classes=["image-upload"],
)
gr.Examples(
examples=person1_images,
inputs=pt_ref_image,
examples_per_page=5,
elem_classes=["examples"],
)
with gr.Column(scale=1):
gr.Markdown("### Target Pose Image", elem_classes=["section-title"])
pt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Target Pose Person Image",
interactive=True,
height=400,
elem_classes=["image-upload"],
)
gr.Examples(
examples=person2_images,
inputs=pt_src_image,
examples_per_page=5,
elem_classes=["examples"],
)
with gr.Column(scale=1):
gr.Markdown("### Result", elem_classes=["section-title"])
pt_gen_image = gr.Image(
label="Generated Image",
height=400,
elem_classes=["image-output"],
)
pt_gen_button = gr.Button(
"Generate Image",
variant="primary",
size="lg",
elem_classes=["generate-btn"],
)
with gr.Accordion("Advanced Settings", open=False, elem_classes=["accordion"]):
pt_ref_acceleration = gr.Checkbox(
label="Accelerate Reference UNet",
value=False,
elem_classes=["checkbox"],
)
pt_step = gr.Slider(
label="Inference Steps",
minimum=30,
maximum=100,
step=1,
value=30,
elem_classes=["slider"],
)
pt_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=5.0,
step=0.1,
value=2.5,
elem_classes=["slider"],
)
pt_seed = gr.Number(
label="Random Seed",
minimum=-1,
maximum=2147483647,
step=1,
value=42,
elem_classes=["number"],
)
with gr.Accordion("Debug Info", open=False, elem_classes=["accordion"]):
pt_mask = gr.Image(label="Generated Mask", height=200)
pt_densepose = gr.Image(label="Generated DensePose", height=200)
pt_gen_button.click(
fn=leffa_predictor.leffa_predict_pt,
inputs=[pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed],
outputs=[pt_gen_image, pt_mask, pt_densepose],
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
)
gr.Markdown(footer_note, elem_classes=["footer"])
demo.css = """
.title { text-align: center; font-size: 2.5em; margin-bottom: 10px; color: #4f46e5; }
.description { text-align: center; font-size: 1.2em; margin-bottom: 20px; color: #374151; }
.section-title { font-size: 1.5em; color: #6b7280; margin-bottom: 10px; }
.image-upload, .image-output { border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); }
.generate-btn { transition: all 0.3s ease; }
.generate-btn:hover { transform: scale(1.05); }
.generate-btn.loading { opacity: 0.7; cursor: not-allowed; }
.accordion { background-color: #f9fafb; border-radius: 8px; }
.radio, .checkbox, .slider, .number { margin: 5px 0; }
.examples { margin-top: 10px; }
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #6b7280; }
"""
demo.launch(share=True, server_port=7860, allowed_paths=["./ckpts/examples"])