Spaces:
Sleeping
Sleeping
Commit
·
b154c96
1
Parent(s):
dc672da
Add application file
Browse files- app.py +98 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from vllm import LLM, SamplingParams
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
MODEL_NAME = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3"
|
10 |
+
SYS_CONTENT = (
|
11 |
+
"あなたは誠実で優秀な日本人の新聞記者です。質問には正確に具体的に答えることができます。"
|
12 |
+
"入力される記事について,誰(who)が何(what)をいつ(when)どこ(where)でどうした(how)と書いてますか?"
|
13 |
+
"次のJSONの値を埋めて返して下さい.どこ(where)には地図で示せるくらい具体的な地名や施設名を入れてください。"
|
14 |
+
"もしも該当の情報が記事になければJSONの値を空にしてください。"
|
15 |
+
"{ \"who\": \"...\", \"what\": \"...\", \"when\": \"...\", \"where\": \"...\", \"how\": \"...\"} "
|
16 |
+
)
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
19 |
+
llm = LLM(
|
20 |
+
model=MODEL_NAME,
|
21 |
+
tensor_parallel_size=1,
|
22 |
+
)
|
23 |
+
|
24 |
+
def preprocess_text(text: str) -> str:
|
25 |
+
# HTMLタグの削除
|
26 |
+
soup = BeautifulSoup(text, 'html.parser')
|
27 |
+
text = soup.get_text()
|
28 |
+
|
29 |
+
# 独自タグの削除 (<...> </...>)
|
30 |
+
text = re.sub(r'<[^>]+>', '', text)
|
31 |
+
|
32 |
+
# 改行、タブ、余分な空白(半角・全角)の削除
|
33 |
+
text = re.sub(r'[\n\t]', '', text)
|
34 |
+
text = re.sub(r'[\s ]+', ' ', text) # 連続する空白を1つの半角スペースに置換
|
35 |
+
text = text.strip()
|
36 |
+
|
37 |
+
return text
|
38 |
+
|
39 |
+
def inference(content: str, max_tokens: int, temperature: float, top_p: float):
|
40 |
+
sampling_params = SamplingParams(
|
41 |
+
temperature=temperature,
|
42 |
+
top_p=top_p,
|
43 |
+
max_tokens=max_tokens,
|
44 |
+
stop="<|eot_id|>"
|
45 |
+
)
|
46 |
+
|
47 |
+
# 入力テキストの前処理
|
48 |
+
processed_content = preprocess_text(content)
|
49 |
+
|
50 |
+
message = [
|
51 |
+
{
|
52 |
+
"role": "system",
|
53 |
+
"content": SYS_CONTENT
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"role": "user",
|
57 |
+
"content": processed_content,
|
58 |
+
},
|
59 |
+
]
|
60 |
+
|
61 |
+
try:
|
62 |
+
prompt = tokenizer.apply_chat_template(
|
63 |
+
message, tokenize=False, add_generation_prompt=True
|
64 |
+
)
|
65 |
+
output = llm.generate(prompt, sampling_params)
|
66 |
+
result_text = output[0].outputs[0].text
|
67 |
+
|
68 |
+
# JSONを抽出
|
69 |
+
json_pattern = r'\{[^{}]*\}'
|
70 |
+
match = re.search(json_pattern, result_text)
|
71 |
+
if not match:
|
72 |
+
return "エラー: 生成されたテキストからJSONが見つかりませんでした。"
|
73 |
+
|
74 |
+
try:
|
75 |
+
json_data = json.loads(match.group())
|
76 |
+
return json.dumps(json_data, ensure_ascii=False, indent=2)
|
77 |
+
except json.JSONDecodeError as e:
|
78 |
+
return f"JSONパースエラー: {str(e)}"
|
79 |
+
except Exception as e:
|
80 |
+
return f"生成エラー: {str(e)}"
|
81 |
+
|
82 |
+
# Gradioインターフェースの作成
|
83 |
+
demo = gr.Interface(
|
84 |
+
fn=inference,
|
85 |
+
inputs=[
|
86 |
+
gr.Textbox(label="入力テキスト", lines=10),
|
87 |
+
gr.Number(label="最大トークン数", value=512),
|
88 |
+
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.3, step=0.1),
|
89 |
+
gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1),
|
90 |
+
],
|
91 |
+
outputs=gr.Textbox(label="解析結果", lines=10),
|
92 |
+
title="意味解析エンジン",
|
93 |
+
description="テキストを入力すると、5W(Who, What, When, Where, How)の形式で情報を抽出します.テキスト内に混入した改行や空白,独自タグ等を削除する整形処理を入れてますが,きちんとテストしていません.エラーが出る場合は事前に整形してからテキストを入れて下さい.",
|
94 |
+
)
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
demo.launch()
|
98 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.44.1
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
vllm
|
5 |
+
beautifulsoup4
|