Spaces:
Runtime error
Runtime error
# https://huggingface.co/nlpconnect/vit-gpt2-image-captioning | |
import urllib.request | |
import modal | |
stub = modal.Stub("vit-gpt2-image-captioning") | |
volume = modal.SharedVolume().persist("shared_vol") | |
def predict(image): | |
import io | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
model = VisionEncoderDecoderModel.from_pretrained( | |
"nlpconnect/vit-gpt2-image-captioning" | |
) | |
feature_extractor = ViTImageProcessor.from_pretrained( | |
"nlpconnect/vit-gpt2-image-captioning" | |
) | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
input_img = Image.open(io.BytesIO(image)) | |
pixel_values = feature_extractor( | |
images=[input_img], return_tensors="pt" | |
).pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def main(): | |
from pathlib import Path | |
image_filepath = Path(__file__).parent / "sample.png" | |
if image_filepath.exists(): | |
with open(image_filepath, "rb") as f: | |
image = f.read() | |
else: | |
try: | |
image = urllib.request.urlopen( | |
"https://drive.google.com/uc?id=0B0TjveMhQDhgLTlpOENiOTZ6Y00&export=download" | |
).read() | |
except urllib.error.URLError as e: | |
print(e.reason) | |
print(predict.call(image)[0]) | |