yvankob's picture
Update app.py
5c5156e
raw
history blame
8.07 kB
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes
from gradio.components import Audio, Dropdown, Radio, Textbox
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v2"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
def load_models():
# build model and tokenizer
model_name_dict = {
'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
# 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
}
model_dict = {}
for call_name, real_name in model_name_dict.items():
print('\tLoading model: %s' % call_name)
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
tokenizer = AutoTokenizer.from_pretrained(real_name)
model_dict[call_name+'_model'] = model
model_dict[call_name+'_tokenizer'] = tokenizer
return model_dict
def translation(source, target, text):
try:
print("Début de la traduction")
if len(model_dict) == 2:
model_name = 'nllb-distilled-1.3B'
start_time = time.time()
source = flores_codes[source]
target = flores_codes[target]
model = model_dict[model_name + '_model']
tokenizer = model_dict[model_name + '_tokenizer']
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
output = translator(text, max_length=400)
end_time = time.time()
output = output[0]['translation_text']
result = {'inference_time': end_time - start_time,
'source': source,
'target': target,
'result': output}
print("Fin de la transcription")
except Exception as e:
print(f"Erreur lors de la transcription : {e}")
return result
def transcribe(inputs, task, source, target):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
try:
print("Début de la transcription")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
translated_text = translation(source, target, text)
print("Fin de la transcription")
except Exception as e:
print(f"Erreur lors de la transcription : {e}")
return text, translated_text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
translated_text = translation(source, target, text)
return html_embed_str, text, translated_text
global model_dict
model_dict = load_models()
demo = gr.Blocks()
lang_codes = list(flores_codes.keys())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
Audio(source="microphone", type="filepath"),
Radio(["transcribe", "translate"], label="Task"),
Dropdown(lang_codes, default='English', label='Source'),
Dropdown(lang_codes, default='French', label='Target'),
],
outputs=[Textbox(label="Transcribed Text"), Textbox(label="Translated Text")],
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
Audio(source="upload", type="filepath", label="Audio file"),
Radio(["transcribe", "translate"], label="Task"),
Dropdown(lang_codes, default='English', label='Source'),
Dropdown(lang_codes, default='French', label='Target'),
],
outputs=[Textbox(label="Transcribed Text"), Textbox(label="Translated Text")],
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
Radio(["transcribe", "translate"], label="Task"),
Dropdown(lang_codes, default='English', label='Source'),
Dropdown(lang_codes, default='French', label='Target'),
],
outputs=[Textbox(label="html"), Textbox(label="Transcribed Text"), Textbox(label="Translated Text")],
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch().queue()