File size: 2,165 Bytes
02fc79d
 
7e0679d
933893f
cfb47bd
a0a3c71
02fc79d
d19cbee
 
844418d
98cb8e3
cb167f0
 
572bbdb
98cb8e3
d19cbee
ab2986e
 
 
 
 
98cb8e3
 
 
 
 
 
 
 
 
 
d7fd676
81f5fb5
 
 
 
ab2986e
 
98cb8e3
a91f0b6
ea8b1a7
a91f0b6
 
 
 
 
98cb8e3
21042d3
6daebf6
98cb8e3
f57f2aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
from gpt4all import GPT4All
from urllib.request import urlopen
import json
import time
from load_llms import model_choices, llm_intro, load_model


# Construct chatbot
def generate_response(model_name, message, chat_history):
    model = load_model(model_name)
    response = model.generate(message, max_tokens=100)
    chat_history.append((message, response))
    return "", chat_history

# Create Gradio UI
with gr.Blocks(
    css=".contain { display: flex !important; flex-direction: column !important; }"
    "#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
    "#col { height: calc(100vh - 112px - 16px) !important; }"
) as demo:
    gr.Markdown("# GPT4All Chatbot")
    with gr.Row():
        with gr.Column(scale=1):
            model_dropdown = gr.Dropdown(
                choices=model_choices(),  
                multiselect=False,
                type="value",
                value="orca-mini-3b-gguf2-q4_0.gguf",
                label="LLMs to choose from"
            )
            explanation = gr.Textbox(label="Model Description", interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf"))
    
            # Link the dropdown with the textbox to update the description based on the selected model
            model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation)
            
        with gr.Column(scale=4, elem_id='col'):
            chatbot = gr.Chatbot(label="Chatroom", value=[(None, "How may I help you today?")], elem_id="chatbot")

            with gr.Row():       
                with gr.Column(scale=10):
                    message = gr.Textbox(label="Message")
                    message.submit(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot])
                with gr.Column(scale=1):
                    submit_button = gr.Button("Submit")
                    submit_button.click(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot])

            clear = gr.ClearButton([message, chatbot])

# Launch the Gradio app
demo.launch()

#     clear = gr.ClearButton([input_text, chatbot])