import gradio as gr from gpt4all import GPT4All from urllib.request import urlopen import json import time url = "https://raw.githubusercontent.com/nomic-ai/gpt4all/main/gpt4all-chat/metadata/models3.json" response = urlopen(url) data_json = json.loads(response.read()) def model_choices(): model_list = [data_json[i]['filename'] for i in range(len(data_json))] return model_list model_description = {model['filename']: model['description'] for model in data_json} def llm_intro(selected_model): return model_description.get(selected_model, "No description available for this model selection.") model_cache = {} # Global cache def load_model(model_name): """ This function checks the cache before loading a model. If the model is cached, it returns the cached version. Otherwise, it loads the model, caches it, and then returns it. """ if model_name not in model_cache: model = GPT4All(model_name) model_cache[model_name] = model return model_cache[model_name] def generate_text(input_text, selected_model): """ Generate text using the selected model. This function now uses the caching mechanism to load models. """ model = load_model_with_cache(selected_model) output = model.generate(input_text, max_tokens=100) return output # with gr.Blocks() as demo: # gr.Markdown("## GPT4All Text Generation Experiment") # with gr.Row(): # model_selection = gr.Dropdown(choices=model_choices(), # multiselect=False, # label="LLMs to choose from", # type="value", # value="orca-mini-3b-gguf2-q4_0.gguf") # explanation = gr.Textbox(label="Model Description", lines=3, interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf")) # # Link the dropdown with the textbox to update the description based on the selected model # model_selection.change(fn=llm_intro, inputs=model_selection, outputs=explanation) # chatbot = gr.Chatbot() # input_text = gr.Textbox(lines=3, label="Press shift+Enter to submit") # # output_text = gr.Textbox(lines=10, label="Generated Text") # clear = gr.ClearButton([input_text, chatbot]) # Define the chatbot function def generate_response(model_name, message, chat_history): model = load_model(model_name) chat_history = [] if len(chat_history) > 0: past_chat = ", ".join(chat_history) input_text = past_chat + " " + message else: input_text = message response = model.generate(input_text, max_tokens=100) chat_history.append((input_text, response)) return chat_history, response # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# GPT4All Chatbot") with gr.Row(): with gr.Column(scale=1): model_dropdown = gr.Dropdown( choices=model_choices(), multiselect=False, type="value", value="orca-mini-3b-gguf2-q4_0.gguf", label="LLMs to choose from" ) explanation = gr.Textbox(label="Model Description", lines=3, interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf")) # Link the dropdown with the textbox to update the description based on the selected model model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation) with gr.Column(scale=4): chatbot = gr.Chatbot(label="Conversation", value=[(None, "How may I help you today?")]) message = gr.Textbox(label="Message") state = gr.State() message.submit(generate_response, inputs=[model_dropdown, message, state], outputs=[chatbot, state]) # Launch the Gradio app demo.launch()