import asyncio import aiohttp from aiohttp import web import json import logging import os import time from typing import Dict, List, Optional, Any, Union from collections import deque from dataclasses import dataclass from enum import Enum import uuid import sys # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler(sys.stdout)] ) logger = logging.getLogger(__name__) class SystemRoleMode(Enum): KEEP = "keep" # 保留system角色模式 CONVERT = "convert" # system角色转换为user模式 @dataclass class TokenInfo: token: str failed_count: int = 0 last_used: float = 0 last_balance_check: float = 0 class ConfigManager: """配置管理器""" def __init__(self): self.API_KEY = os.getenv('API_KEY', 'sk-123456') self.TARGET_URL = os.getenv('TARGET_URL', 'https://miler-kiloai.deno.dev') self.BALANCE_CHECK_URL = os.getenv('BALANCE_CHECK_URL', 'https://kilocode.ai/api/profile/balance') self.TARGET_HEADERS = { 'Content-Type': 'application/json', 'User-Agent': 'Kilo-Code/4.58.0', 'Accept': 'application/json', 'Accept-Encoding': 'br, gzip, deflate', 'X-Stainless-Retry-Count': '0', 'X-Stainless-Lang': 'js', 'X-Stainless-Package-Version': '5.5.1', 'X-Stainless-OS': 'Windows', 'X-Stainless-Arch': 'x64', 'X-Stainless-Runtime': 'node', 'X-Stainless-Runtime-Version': 'v20.19.0', 'HTTP-Referer': 'https://kilocode.ai', 'X-Title': 'Kilo Code', 'X-KiloCode-Version': '4.58.0', 'accept-language': '*', 'sec-fetch-mode': 'cors' } # 余额检测专用头部 self.BALANCE_CHECK_HEADERS = { 'User-Agent': 'axios/1.9.0', 'Connection': 'close', 'Accept': 'application/json, text/plain, */*', 'Accept-Encoding': 'gzip, compress, deflate, br', 'Content-Type': 'application/json' } self.MAX_RETRIES = int(os.getenv('MAX_RETRIES', '3')) self.MAX_CONCURRENT = int(os.getenv('MAX_CONCURRENT', '10')) self.PORT = int(os.getenv('PORT', '25526')) self.SYSTEM_ROLE_MODE = SystemRoleMode(os.getenv('SYSTEM_ROLE_MODE', 'keep')) # 模型映射字典 - OpenAI模型映射到Kilo模型 self.MODEL_MAPPING = { 'gemini-2.5-flash':'google/gemini-2.5-flash', 'gemini-2.5-flash-thinking':'google/gemini-2.5-flash', 'gemini-2.5-pro-thinking':'google/gemini-2.5-pro', 'grok-4-07-09-thingking':'x-ai/grok-4', 'claude-3-7-sonnet-20250219': 'anthropic/claude-3.7-sonnet', 'claude-3-7-sonnet-20250219-thinking': 'anthropic/claude-3.7-sonnet', 'claude-opus-4-20250514': 'anthropic/claude-opus-4', 'claude-opus-4-20250514-thinking': 'anthropic/claude-opus-4', 'claude-sonnet-4-20250514': 'anthropic/claude-sonnet-4', 'claude-sonnet-4-20250514-thinking': 'anthropic/claude-sonnet-4' } # Token池配置 self.TOKEN_POOL = self._load_token_pool() self.TOKEN_FAILURE_THRESHOLD = int(os.getenv('TOKEN_FAILURE_THRESHOLD', '3')) # 余额检测配置 self.BALANCE_CHECK_INTERVAL = int(os.getenv('BALANCE_CHECK_INTERVAL', '3600')) # 余额检测间隔(秒) self.MIN_BALANCE_THRESHOLD = float(os.getenv('MIN_BALANCE_THRESHOLD', '1.0')) # 最小余额阈值 def _load_token_pool(self) -> List[str]: """加载Token池""" tokens = os.getenv('TOKEN_POOL', '').split(',') return [token.strip() for token in tokens if token.strip()] class MessageProcessor: """消息处理器""" def __init__(self, config: ConfigManager): self.config = config def process_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """处理消息数组""" if self.config.SYSTEM_ROLE_MODE == SystemRoleMode.KEEP: return self._process_keep_system_mode(messages) else: return self._process_convert_system_mode(messages) def _process_keep_system_mode(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """保留system角色模式处理""" if not messages: return messages result = [] i = 0 # 第一阶段:合并开头的连续system消息 if messages[0].get('role') == 'system': merged_content = [] while i < len(messages) and messages[i].get('role') == 'system': content = messages[i].get('content', '') if content: merged_content.append(self._extract_text_content(content)) i += 1 if merged_content: result.append({ 'role': 'system', 'content': [{'type': 'text', 'text': '\n'.join(merged_content)}] }) # 第二阶段:处理剩余消息 while i < len(messages): current_msg = messages[i].copy() # 将后续的system消息转为user if current_msg.get('role') == 'system': current_msg['role'] = 'user' # 确保content格式正确 current_msg = self._normalize_message_content(current_msg) # 检查是否需要与前一个消息合并 if (result and result[-1].get('role') == current_msg.get('role') and self._can_merge_content(result[-1].get('content')) and self._can_merge_content(current_msg.get('content'))): # 合并内容 prev_content = self._extract_text_content(result[-1]['content']) curr_content = self._extract_text_content(current_msg['content']) result[-1]['content'] = [{'type': 'text', 'text': f"{prev_content}\n{curr_content}"}] else: result.append(current_msg) i += 1 return result def _process_convert_system_mode(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """转换system角色模式处理""" if not messages: return messages # 第一阶段:转换所有system为user converted_messages = [] for msg in messages: new_msg = msg.copy() if new_msg.get('role') == 'system': new_msg['role'] = 'user' new_msg = self._normalize_message_content(new_msg) converted_messages.append(new_msg) # 第二阶段:合并连续的相同角色 result = [] for msg in converted_messages: if (result and result[-1].get('role') == msg.get('role') and self._can_merge_content(result[-1].get('content')) and self._can_merge_content(msg.get('content'))): # 合并内容 prev_content = self._extract_text_content(result[-1]['content']) curr_content = self._extract_text_content(msg['content']) result[-1]['content'] = [{'type': 'text', 'text': f"{prev_content}\n{curr_content}"}] else: result.append(msg) return result def _normalize_message_content(self, message: Dict[str, Any]) -> Dict[str, Any]: """标准化消息内容格式""" content = message.get('content') role = message.get('role') tool_calls = message.get('tool_calls', None) if role == 'tool' or tool_calls is not None: return message if isinstance(content, str): message['content'] = [{'type': 'text', 'text': content}] elif isinstance(content, list): # 保持原有格式 pass else: message['content'] = [{'type': 'text', 'text': str(content)}] return message def _can_merge_content(self, content: Any) -> bool: """判断内容是否可以合并""" if isinstance(content, list) and len(content) == 1: return content[0].get('type') == 'text' return False def _extract_text_content(self, content: Any) -> str: """提取文本内容""" if isinstance(content, str): return content elif isinstance(content, list) and len(content) == 1 and content[0].get('type') == 'text': return content[0].get('text', '') return str(content) class TokenManager: """Token管理器""" def __init__(self, config: ConfigManager): self.config = config self.available_tokens = deque([TokenInfo(token) for token in config.TOKEN_POOL]) self.failed_tokens = deque() self.lock = asyncio.Lock() self.balance_check_task = None self._shutdown_event = asyncio.Event() async def start_balance_checker(self): """启动余额检测后台任务""" if self.balance_check_task is None: self.balance_check_task = asyncio.create_task(self._balance_check_loop()) logger.info("余额检测后台任务已启动") async def stop_balance_checker(self): """停止余额检测后台任务""" if self.balance_check_task: self._shutdown_event.set() try: await asyncio.wait_for(self.balance_check_task, timeout=5.0) except asyncio.TimeoutError: self.balance_check_task.cancel() self.balance_check_task = None logger.info("余额检测后台任务已停止") async def get_token(self) -> Optional[str]: """获取可用token""" async with self.lock: # 如果没有可用token且有失败token,立即尝试恢复一次 if not self.available_tokens and self.failed_tokens: await self._immediate_recovery_check() if self.available_tokens: token_info = self.available_tokens.popleft() token_info.last_used = time.time() return token_info.token return None async def return_token(self, token: str, success: bool = True): """归还token""" async with self.lock: token_info = TokenInfo(token) if success: token_info.failed_count = 0 self.available_tokens.append(token_info) else: token_info.failed_count += 1 if token_info.failed_count >= self.config.TOKEN_FAILURE_THRESHOLD: self.failed_tokens.append(token_info) logger.warning(f"Token已移至失败池: {token[:10]}...") else: self.available_tokens.append(token_info) async def _balance_check_loop(self): """余额检测循环(后台任务)""" logger.info(f"开始余额检测循环,检测间隔: {self.config.BALANCE_CHECK_INTERVAL}秒") while not self._shutdown_event.is_set(): try: await asyncio.wait_for( self._shutdown_event.wait(), timeout=self.config.BALANCE_CHECK_INTERVAL ) break # 如果事件被设置,退出循环 except asyncio.TimeoutError: pass # 超时是正常的,继续检测 # 执行余额检测 await self._check_failed_tokens_balance() async def _immediate_recovery_check(self): """立即恢复检测(当没有可用token时)""" logger.info("没有可用token,立即执行恢复检测") await self._check_failed_tokens_balance() async def _check_failed_tokens_balance(self): """检测失败token的余额状态""" if not self.failed_tokens: return current_time = time.time() tokens_to_check = [] # 收集需要检测的token async with self.lock: for token_info in list(self.failed_tokens): # 检查是否需要进行余额检测(避免频繁检测同一个token) if current_time - token_info.last_balance_check >= self.config.BALANCE_CHECK_INTERVAL: tokens_to_check.append(token_info) if not tokens_to_check: return logger.info(f"开始检测 {len(tokens_to_check)} 个失败token的余额") # 并发检测所有失败token的余额 check_tasks = [ self._check_single_token_balance(token_info) for token_info in tokens_to_check ] results = await asyncio.gather(*check_tasks, return_exceptions=True) # 处理检测结果 recovered_tokens = [] async with self.lock: for token_info, result in zip(tokens_to_check, results): token_info.last_balance_check = current_time if isinstance(result, Exception): logger.warning(f"Token {token_info.token[:10]}... 余额检测失败: {str(result)}") continue if result: # 余额充足 # 从失败池中移除 try: self.failed_tokens.remove(token_info) token_info.failed_count = 0 recovered_tokens.append(token_info) except ValueError: pass # token可能已被其他地方移除 # 将恢复的token加入可用池 if recovered_tokens: async with self.lock: self.available_tokens.extend(recovered_tokens) logger.info(f"成功恢复 {len(recovered_tokens)} 个token到可用池") async def _check_single_token_balance(self, token_info: TokenInfo) -> bool: """检测单个token的余额""" try: headers = self.config.BALANCE_CHECK_HEADERS.copy() headers['Authorization'] = f'Bearer {token_info.token}' timeout = aiohttp.ClientTimeout(total=10) # 10秒超时 async with aiohttp.ClientSession(timeout=timeout) as session: async with session.get( self.config.BALANCE_CHECK_URL, headers=headers ) as response: if response.status == 200: balance_data = await response.json() balance = balance_data.get('balance', 0) is_depleted = balance_data.get('isDepleted', True) logger.info(f"Token {token_info.token[:10]}... 余额检测: balance={balance}, isDepleted={is_depleted}") # 检查余额是否大于阈值且未耗尽 if balance > self.config.MIN_BALANCE_THRESHOLD and not is_depleted: logger.info(f"Token {token_info.token[:10]}... 余额充足,可以恢复使用") return True else: logger.info(f"Token {token_info.token[:10]}... 余额不足或已耗尽") return False else: error_text = await response.text() logger.warning(f"Token {token_info.token[:10]}... 余额检测失败: 状态码={response.status}, 错误={error_text}") return False except Exception as e: logger.error(f"Token {token_info.token[:10]}... 余额检测异常: {str(e)}") return False class RequestHandler: """请求处理器""" def __init__(self, config: ConfigManager, message_processor: MessageProcessor, token_manager: TokenManager): self.config = config self.message_processor = message_processor self.token_manager = token_manager self.semaphore = asyncio.Semaphore(config.MAX_CONCURRENT) async def handle_chat_completion(self, request: web.Request) -> web.Response: """处理聊天完成请求""" async with self.semaphore: try: # 验证API Key if not self._validate_api_key(request): logger.warning("API密钥验证失败") return web.json_response( {"error": {"message": "Invalid API key", "type": "authentication_error"}}, status=401 ) # 解析请求体 request_data = await request.json() logger.info(f"收到请求: 模型={request_data.get('model', 'unknown')}, 消息数={len(request_data.get('messages', []))}") # 提取和验证参数 extracted_params = self._extract_openai_params(request_data) # 处理消息 processed_messages = self.message_processor.process_messages(extracted_params['messages']) logger.info(f"处理后的消息: {json.dumps(processed_messages, ensure_ascii=False)}") # 构建目标请求体 target_request = self._build_target_request(extracted_params, processed_messages) logger.info(f"构建的目标请求体: {json.dumps(target_request, ensure_ascii=False, indent=4)}") # 执行请求 return await self._execute_request(request, target_request, extracted_params.get('stream', False)) except Exception as e: logger.error(f"请求处理错误: {str(e)}") return web.json_response( {"error": {"message": "Internal server error", "type": "server_error"}}, status=500 ) def _validate_api_key(self, request: web.Request) -> bool: """验证API Key""" auth_header = request.headers.get('Authorization', '') if not auth_header.startswith('Bearer '): return False api_key = auth_header[7:] # Remove 'Bearer ' prefix return api_key in self.config.API_KEY def _extract_openai_params(self, request_data: Dict[str, Any]) -> Dict[str, Any]: """提取OpenAI标准参数""" params = {} # 必需参数 params['messages'] = request_data.get('messages', []) params['model'] = request_data.get('model', None) if params['model'] is None: raise ValueError("model 不能为空") elif params['model'] not in self.config.MODEL_MAPPING: raise ValueError(f"model {params['model']} 不支持") # 可选参数 optional_params = [ 'stream', 'max_tokens', 'temperature', 'top_p', 'reasoning', 'include_reasoning', 'stop', 'frequency_penalty', 'presence_penalty', 'seed', 'repetition_penalty', 'logit_bias', 'tools', 'tool_choice', 'stream_options' ] for param in optional_params: if param in request_data: params[param] = request_data[param] return params def _build_target_request(self, params: Dict[str, Any], processed_messages: List[Dict[str, Any]]) -> Dict[str, Any]: """构建目标请求体""" target_request = { 'messages': processed_messages, 'model': self.config.MODEL_MAPPING.get(params['model'], params['model']) } # 添加其他参数 for key, value in params.items(): if key not in ['messages', 'model']: target_request[key] = value if "thinking" in params['model']: if "max_tokens" in params: target_request['reasoning'] ={'max_tokens': int(params['max_tokens'] / 2)} else: target_request['max_tokens'] = 4096 target_request['reasoning'] = {'max_tokens': 2048} logger.info(f"目标模型: {target_request['model']}") return target_request async def _execute_request(self, original_request: web.Request, target_request: Dict[str, Any], is_stream: bool) -> web.Response: """执行请求""" for attempt in range(self.config.MAX_RETRIES): token = await self.token_manager.get_token() if not token: logger.error("没有可用的token") return web.json_response( {"error": {"message": "No available tokens", "type": "server_error"}}, status=503 ) try: headers = self.config.TARGET_HEADERS.copy() headers['authorization'] = f'Bearer {token}' headers['X-KiloCode-TaskId'] = str(uuid.uuid4()) timeout = aiohttp.ClientTimeout(total=3000) # 5分钟超时 logger.info(f"尝试第 {attempt + 1} 次请求 Kilo API") async with aiohttp.ClientSession(timeout=timeout) as session: async with session.post( self.config.TARGET_URL, json=target_request, headers=headers ) as response: if response.status == 200: await self.token_manager.return_token(token, success=True) logger.info(f"请求成功: 状态码={response.status}, 流式={is_stream}") if is_stream: return await self._handle_stream_response(original_request, response) else: return await self._handle_non_stream_response(response) else: await self.token_manager.return_token(token, success=False) error_text = await response.text() logger.error(f"请求失败: 状态码={response.status}, 错误={error_text}") if attempt == self.config.MAX_RETRIES - 1: return web.json_response( {"error": {"message": error_text, "type": "api_error"}}, status=response.status ) except Exception as e: await self.token_manager.return_token(token, success=False) logger.error(f"请求尝试 {attempt + 1} 失败: {str(e)}") if attempt == self.config.MAX_RETRIES - 1: return web.json_response( {"error": {"message": "Request failed after retries", "type": "server_error"}}, status=500 ) return web.json_response( {"error": {"message": "Max retries exceeded", "type": "server_error"}}, status=500 ) async def _handle_stream_response(self, original_request: web.Request, response: aiohttp.ClientResponse) -> web.Response: """处理流式响应""" stream_response = web.StreamResponse( status=200, headers={ 'Content-Type': 'text/event-stream', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Access-Control-Allow-Origin': '*' } ) await stream_response.prepare(original_request) logger.info("开始处理流式响应") try: async for line in response.content: logger.info(f"流式响应: {line}") # 检查客户端是否断开连接 if original_request.transport is None or original_request.transport.is_closing(): logger.info("客户端在流式传输期间断开连接") break if not line: continue try: line_str = line.decode('utf-8').strip() # 处理SSE格式的数据 if line_str.startswith('data: '): json_str = line_str[6:] # 移除 'data: ' 前缀 # 检查是否是结束标记 if json_str == '[DONE]': continue # 跳过,在finally中发送自己的结束标记 # 解析JSON数据 openai_chunk = json.loads(json_str) sse_line = f"data: {json.dumps(openai_chunk, ensure_ascii=False)}\n\n" await stream_response.write(sse_line.encode('utf-8')) except json.JSONDecodeError: # 跳过无法解析的行 continue except Exception as e: logger.warning(f"处理流式数据时出错: {str(e)}") continue except Exception as e: logger.error(f"流式响应错误: {str(e)}") finally: # 发送结束标记 await stream_response.write(b"data: [DONE]\n\n") logger.info("流式响应处理完成") return stream_response async def _handle_non_stream_response(self, response: aiohttp.ClientResponse) -> web.Response: """处理非流式响应""" logger.info("开始处理非流式响应") response_data = await response.json() logger.info("非流式响应处理完成") return web.json_response(response_data) def _convert_chunk_to_openai_format(self, kilo_chunk: Dict[str, Any]) -> Dict[str, Any]: """转换Kilo流式chunk为OpenAI格式""" openai_chunk = { "id": kilo_chunk.get("id", ""), "object": "chat.completion.chunk", "created": kilo_chunk.get("created", int(time.time())), "model": kilo_chunk.get("model", "gpt-3.5-turbo"), "choices": [] } if "choices" in kilo_chunk: for choice in kilo_chunk["choices"]: openai_choice = { "index": choice.get("index", 0), "delta": {}, "finish_reason": choice.get("finish_reason") } if "delta" in choice: delta = choice["delta"] if "role" in delta: openai_choice["delta"]["role"] = delta["role"] if "content" in delta: openai_choice["delta"]["content"] = delta["content"] openai_chunk["choices"].append(openai_choice) # 添加usage信息(如果存在) if "usage" in kilo_chunk: openai_chunk["usage"] = kilo_chunk["usage"] return openai_chunk def _convert_to_openai_format(self, kilo_response: Dict[str, Any]) -> Dict[str, Any]: """转换Kilo响应为OpenAI格式""" openai_response = { "id": kilo_response.get("id", ""), "object": "chat.completion", "created": kilo_response.get("created", int(time.time())), "model": kilo_response.get("model", "gpt-3.5-turbo"), "choices": [], "usage": kilo_response.get("usage", {}) } if "choices" in kilo_response: for choice in kilo_response["choices"]: openai_choice = { "index": choice.get("index", 0), "message": choice.get("message", {}), "finish_reason": choice.get("finish_reason", "stop") } openai_response["choices"].append(openai_choice) return openai_response class ModelListHandler: """模型列表处理器""" def __init__(self, config: ConfigManager): self.config = config async def handle_models(self, request: web.Request) -> web.Response: """处理模型列表请求""" models = [] current_time = int(time.time()) # 返回映射中的所有模型 for openai_model ,kilo_model in self.config.MODEL_MAPPING.items(): models.append({ "id": openai_model, "object": "model", "created": current_time, "owned_by": "kilo-proxy", "permission": [], "root": openai_model, "parent": None }) logger.info(f"返回 {len(models)} 个可用模型") return web.json_response({ "object": "list", "data": models }) class ProxyServer: """代理服务器主类""" def __init__(self): self.config = ConfigManager() self.message_processor = MessageProcessor(self.config) self.token_manager = TokenManager(self.config) self.request_handler = RequestHandler(self.config, self.message_processor, self.token_manager) self.model_handler = ModelListHandler(self.config) self.app = self._create_app() def _create_app(self) -> web.Application: """创建应用""" app = web.Application() # 添加路由 app.router.add_post('/v1/chat/completions', self.request_handler.handle_chat_completion) app.router.add_get('/v1/models', self.model_handler.handle_models) # 添加CORS中间件 app.middlewares.append(self._cors_middleware) return app async def _cors_middleware(self, app, handler): """CORS中间件""" async def middleware_handler(request): if request.method == 'OPTIONS': return web.Response( headers={ 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'GET, POST, OPTIONS', 'Access-Control-Allow-Headers': 'Content-Type, Authorization' } ) response = await handler(request) response.headers['Access-Control-Allow-Origin'] = '*' return response return middleware_handler async def start(self): """启动服务器""" runner = web.AppRunner(self.app) await runner.setup() site = web.TCPSite(runner, '0.0.0.0', self.config.PORT) await site.start() logger.info(f"Kilo代理服务器已启动 http://127.0.0.1:{self.config.PORT}") logger.info(f"系统角色模式: {self.config.SYSTEM_ROLE_MODE.value}") logger.info(f"可用token数量: {len(self.config.TOKEN_POOL)}") logger.info(f"余额检测间隔: {self.config.BALANCE_CHECK_INTERVAL}秒") logger.info(f"最小余额阈值: {self.config.MIN_BALANCE_THRESHOLD}") logger.info(f"模型映射: {self.config.MODEL_MAPPING}") logger.info(f"目标URL: {self.config.TARGET_URL}") logger.info(f"余额检测URL: {self.config.BALANCE_CHECK_URL}") # 启动余额检测后台任务 await self.token_manager.start_balance_checker() # 保持服务器运行 try: # 保持服务器运行 while True: await asyncio.sleep(3600) except KeyboardInterrupt: logger.info("正在关闭服务器...") finally: await self.token_manager.stop_balance_checker() await runner.cleanup() def main(): """主函数""" # 检查必要的环境变量 required_env_vars = ['API_KEY', 'TOKEN_POOL'] missing_vars = [var for var in required_env_vars if not os.getenv(var)] if missing_vars: logger.error(f"缺少必需的环境变量: {missing_vars}") logger.error("请设置以下环境变量:") logger.error("- API_KEY: 您的API密钥(多个用逗号分隔)") logger.error("- TOKEN_POOL: Kilo token池(多个token用逗号分隔)") sys.exit(1) # 创建并启动服务器 server = ProxyServer() try: logger.info("正在启动Kilo代理服务器...") asyncio.run(server.start()) except KeyboardInterrupt: logger.info("服务器已被用户停止") except Exception as e: logger.error(f"服务器错误: {str(e)}") sys.exit(1) if __name__ == '__main__': main()