File size: 27,859 Bytes
56b874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import json
import os
import time
import uuid
import hashlib
import base64
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor

import requests
from flask import Flask, request, jsonify, Response, stream_with_context
from flask_cors import CORS
from dotenv import load_dotenv

# 加载环境变量
load_dotenv()

# ==================== 配置管理类 ====================
class Config:
    """全局配置管理"""
    
    # 服务器配置
    PORT = int(os.getenv('PORT', 5200))
    MAX_WORKERS = int(os.getenv('MAX_WORKERS', 20))
    
    # 认证配置
    API_KEY = os.getenv('API_KEY', 'sk-123456')
    RAYCAST_TOKEN = os.getenv('RAYCAST_TOKEN', 'rca_9455afe4694f6d63194263810fa7e93a659e21b0eb2e384e18b26dec53c0ee21')
    
    # Raycast API 配置
    RAYCAST_BASE_URL = 'https://backend.raycast.com/api/v1'
    RAYCAST_CHAT_URL = f'{RAYCAST_BASE_URL}/ai/chat_completions'
    RAYCAST_FILES_URL = f'{RAYCAST_BASE_URL}/ai/files/'
    
    # Raycast 请求头配置
    RAYCAST_HEADERS = {
        'Content-Type': 'application/json',
        'accept-language': 'zh-CN,zh-Hans;q=0.9',
        'x-raycast-deviceid': 'c86ec3d4b2c9a66de6d1a19fc5bada76fc15af8f117dc1b69ba993391f0ad531',
        'accept-encoding': 'gzip, deflate, br',
        'user-agent': 'Raycast/1.0.4/747 (iOS Version 18.2.1 (Build 22C161))',
        'Cookie': '__raycast_session=4eb4e28abc9196e140b1980c79b75cdc'
    }
    
    # 系统偏好设置
    DEFAULT_SYSTEM_INSTRUCTIONS = f"""<user-preferences>

  The user has the following system preferences:

  - Locale: en-CN

  - Timezone: Asia/Shanghai

  - Current Date: {datetime.now().strftime('%Y-%m-%d')}

  - Unit Currency: ¥

  - Unit Temperature: °C

  - Unit Length: m

  - Unit Mass: kg

  - Decimal Separator: .

  - Grouping Separator: ,

  Use the system preferences to format your answers accordingly.

</user-preferences>"""
    
    @classmethod
    def get_raycast_headers(cls, include_auth=True):
        """获取Raycast请求头"""
        headers = cls.RAYCAST_HEADERS.copy()
        if include_auth:
            headers['authorization'] = f'Bearer {cls.RAYCAST_TOKEN}'
        return headers

# 配置Flask应用
app = Flask(__name__)
CORS(app)

# 创建线程池
executor = ThreadPoolExecutor(max_workers=Config.MAX_WORKERS)

# ==================== 认证装饰器 ====================
def require_auth(f):
    """认证装饰器"""
    def decorated_function(*args, **kwargs):
        auth_header = request.headers.get('Authorization')
        if not auth_header:
            return jsonify({
                'error': {
                    'message': '缺少认证头',
                    'type': 'authentication_error',
                    'code': 'missing_authorization'
                }
            }), 401
        
        # 检查Bearer token格式
        if not auth_header.startswith('Bearer '):
            return jsonify({
                'error': {
                    'message': '认证格式错误',
                    'type': 'authentication_error',
                    'code': 'invalid_authorization_format'
                }
            }), 401
        
        token = auth_header[7:]
        if token != Config.API_KEY:
            return jsonify({
                'error': {
                    'message': '认证失败',
                    'type': 'authentication_error',
                    'code': 'invalid_api_key'
                }
            }), 401
        
        return f(*args, **kwargs)
    decorated_function.__name__ = f.__name__
    return decorated_function

# ==================== 工具类 ====================
class UtilsHelper:
    @staticmethod
    def generate_uuid():
        return str(uuid.uuid4())

    @staticmethod
    def get_current_timestamp():
        return int(time.time())

    @staticmethod
    def generate_md5(data):
        if isinstance(data, str):
            data = data.encode('utf-8')
        return base64.b64encode(hashlib.md5(data).digest()).decode('utf-8')

    @staticmethod
    def is_search_model(model):
        return model.endswith('-search')

    @staticmethod
    def get_base_model(model):
        return model[:-7] if model.endswith('-search') else model

# ==================== 模型映射类 ====================
class ModelMapper:
    BASE_MODELS = {
        "ray1": "raycast",
        "ray1-mini": "raycast",
        "gpt-4.1": "openai",
        "gpt-4.1-mini": "openai",
        "gpt-4.1-nano": "openai",
        "gpt-4": "openai",
        "gpt-4-turbo": "openai",
        "gpt-4o": "openai",
        "gpt-4o-mini": "openai",
        "o3": "openai_o1",
        "o4-mini": "openai_o1",
        "o1-mini": "openai_o1",
        "o1-2024-12-17": "openai_o1",
        "o3-mini": "openai_o1",
        "claude-3-5-haiku-latest": "anthropic",
        "claude-3-5-sonnet-latest": "anthropic",
        "claude-3-7-sonnet-latest": "anthropic",
        "claude-3-7-sonnet-latest-reasoning": "anthropic",
        "claude-3-opus-20240229": "anthropic",
        "claude-sonnet-4-20250514": "anthropic",
        "claude-opus-4-20250514": "anthropic",
        "claude-sonnet-4-20250514-reasoning": "anthropic",
        "claude-opus-4-20250514-reasoning": "anthropic",
        "sonar": "perplexity",
        "sonar-pro": "perplexity",
        "sonar-reasoning": "perplexity",
        "sonar-reasoning-pro": "perplexity",
        "meta-llama/llama-4-scout-17b-16e-instruct": "groq",
        "llama-3.3-70b-versatile": "groq",
        "llama-3.1-8b-instant": "groq",
        "llama3-70b-8192": "groq",
        "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": "together",
        "open-mistral-nemo": "mistral",
        "mistral-large-latest": "mistral",
        "mistral-medium-latest": "mistral",
        "mistral-small-latest": "mistral",
        "codestral-latest": "mistral",
        "deepseek-r1-distill-llama-70b": "groq",
        "gemini-2.5-pro-preview-06-05": "google",
        "gemini-1.5-flash": "google",
        "gemini-2.5-flash-preview-04-17": "google",
        "gemini-2.0-flash": "google",
        "gemini-2.0-flash-thinking-exp-01-21": "google",
        "deepseek-ai/DeepSeek-R1": "together",
        "deepseek-ai/DeepSeek-V3": "together",
        "grok-3-fast-beta": "xai",
        "grok-3-mini-fast-beta": "xai",
        "grok-2-latest": "xai"
    }

    # 生成完整的模型映射表(包含搜索版本)
    @classmethod
    def get_model_map(cls):
        model_map = cls.BASE_MODELS.copy()
        # 为每个基础模型添加带搜索功能的版本
        for model in cls.BASE_MODELS.keys():
            model_map[f"{model}-search"] = cls.BASE_MODELS[model]
        return model_map

    @classmethod
    def get_provider(cls, model):
        base_model = UtilsHelper.get_base_model(model)
        return cls.get_model_map().get(base_model, 'google')

    @classmethod
    def get_actual_model(cls, model):
        base_model = UtilsHelper.get_base_model(model)
        provider = cls.get_provider(model)
        
        if provider == 'raycast':
            return 'gemini-2.5-flash-preview-04-17'
        else:
            return base_model

    @classmethod
    def get_all_models(cls):
        return list(cls.get_model_map().keys())

# ==================== 工具功能类 ====================
class ToolsManager:
    @staticmethod
    def get_tools(use_search=False):
        if not use_search:
            return []
        
        return [
            {
                "name": "search_images",
                "type": "remote_tool"
            },
            {
                "name": "web_search",
                "type": "remote_tool"
            }
        ]

# ==================== 文件上传类 ====================
class FileUploader:
    @classmethod
    def upload_file(cls, file_data):
        try:
            filename = file_data['filename']
            content = file_data['content']
            content_type = file_data['contentType']
            
            buffer = base64.b64decode(content)
            byte_size = len(buffer)
            checksum = UtilsHelper.generate_md5(buffer)

            # 创建文件元数据
            create_file_payload = {
                'blob': {
                    'byte_size': byte_size,
                    'checksum': checksum,
                    'content_type': content_type,
                    'filename': filename
                }
            }

            headers = Config.get_raycast_headers()
            headers['x-raycast-timestamp'] = str(UtilsHelper.get_current_timestamp())
            headers['x-request-id'] = UtilsHelper.generate_uuid().upper()

            create_response = requests.post(
                Config.RAYCAST_FILES_URL,
                headers=headers,
                json=create_file_payload,
                timeout=30
            )

            if not create_response.ok:
                raise Exception(f'文件元数据创建失败: {create_response.status_code}')

            create_result = create_response.json()
            upload_url = create_result['direct_upload']['url']
            file_id = create_result['id']

            # 上传文件
            upload_headers = {
                'Content-Type': content_type,
                'Content-MD5': checksum,
                'Content-Length': str(byte_size),
                'Content-Disposition': f'inline; filename="{filename}"; filename*=UTF-8\'\'{filename}',
                'Upload-Complete': '?1'
            }

            upload_response = requests.put(
                upload_url,
                headers=upload_headers,
                data=buffer,
                timeout=60
            )

            if not upload_response.ok:
                raise Exception(f'文件上传失败: {upload_response.status_code}')

            return {
                'id': file_id,
                'type': 'file'
            }

        except Exception as error:
            print(f'文件上传错误: {error}')
            raise error

    @classmethod
    def extract_files_from_openai(cls, messages):
        files = []
        
        for message in messages:
            if message.get('role') == 'user' and isinstance(message.get('content'), list):
                for content in message['content']:
                    if content.get('type') == 'image_url' and content.get('image_url'):
                        url = content['image_url']['url']
                        if url.startswith('data:'):
                            # 处理base64图片
                            header, data = url.split(',', 1)
                            mime_match = header.split(':')[1].split(';')[0] if ':' in header else 'image/jpeg'
                            content_type = mime_match
                            
                            files.append({
                                'filename': f'image_{UtilsHelper.generate_uuid()}.{content_type.split("/")[1]}',
                                'content': data,
                                'contentType': content_type
                            })
        
        return files

# ==================== 转换类 ====================
class MessageConverter:
    @classmethod
    def merge_consecutive_messages(cls, messages):
        """合并连续相同角色的消息"""
        if not messages:
            return messages
        
        merged_messages = []
        current_message = None
        
        for message in messages:
            role = message.get('role')
            content = message.get('content', '')
            
            # 处理content为list的情况
            if isinstance(content, list):
                content = ''.join([
                    c.get('text', '') for c in content 
                    if c.get('type') == 'text'
                ])
            
            if current_message is None:
                # 第一条消息
                current_message = {
                    'role': role,
                    'content': content
                }
            elif current_message['role'] == role:
                # 相同角色,合并内容
                current_message['content'] += '\n' + content
            else:
                # 不同角色,保存当前消息并开始新消息
                merged_messages.append(current_message)
                current_message = {
                    'role': role,
                    'content': content
                }
        
        # 添加最后一条消息
        if current_message:
            merged_messages.append(current_message)
        
        return merged_messages

    @classmethod
    def process_system_messages(cls, messages):
        # 先合并连续相同角色的消息
        merged_messages = cls.merge_consecutive_messages(messages)
        
        processed_messages = []
        additional_system_instructions = ''
        system_collection_stopped = False
        
        for message in merged_messages:
            if message.get('role') == 'system':
                if not system_collection_stopped:
                    # 连续的 system 消息收集到 additional_system_instructions
                    if additional_system_instructions:
                        additional_system_instructions += '\n' + message['content']
                    else:
                        additional_system_instructions = message['content']
                else:
                    # 后续的 system 消息转换为 user 消息
                    processed_messages.append({
                        'author': 'user',
                        'content': {
                            'references': [],
                            'text': message['content']
                        }
                    })
            else:
                # 遇到非 system 消息,停止收集 system 消息
                system_collection_stopped = True
                
                processed_message = {
                    'author': 'user' if message.get('role') == 'user' else 'assistant',
                    'content': {
                        'references': [],
                        'text': message['content']
                    }
                }
                
                processed_messages.append(processed_message)
        
        return processed_messages, additional_system_instructions

    @classmethod
    def convert_to_raycast_format(cls, openai_request):
        processed_messages, additional_system_instructions = cls.process_system_messages(
            openai_request['messages']
        )
        
        # 处理文件上传
        files = FileUploader.extract_files_from_openai(openai_request['messages'])
        attachments = []
        
        for file in files:
            try:
                uploaded_file = FileUploader.upload_file(file)
                attachments.append(uploaded_file)
            except Exception as error:
                print(f'文件上传失败: {error}')

        # 如果有附件,添加到最后一个用户消息中
        if attachments and processed_messages:
            last_message = processed_messages[-1]
            if last_message['author'] == 'user':
                last_message['content']['attachments'] = attachments
        
        actual_model = ModelMapper.get_actual_model(openai_request['model'])
        provider = ModelMapper.get_provider(openai_request['model'])
        use_search = UtilsHelper.is_search_model(openai_request['model'])
        
        raycast_request = {
            'additional_system_instructions': additional_system_instructions or Config.DEFAULT_SYSTEM_INSTRUCTIONS,
            'debug': False,
            'locale': 'en_CN',
            'message_id': UtilsHelper.generate_uuid(),
            'messages': processed_messages,
            'model': actual_model,
            'provider': 'google' if provider == 'raycast' else provider,
            'source': 'ai_chat',
            'tools': ToolsManager.get_tools(use_search)
        }
        
        return raycast_request

# ==================== 响应处理类 ====================
class ResponseProcessor:
    def __init__(self):
        self.is_thinking = False
        self.thinking_content = ''

    def process_raycast_chunk(self, chunk):
        content = ''
        
        # 处理思考内容
        if chunk.get('reasoning'):
            if not self.is_thinking:
                # 开始思考
                self.is_thinking = True
                content += '<think>'
            content += chunk['reasoning']
            self.thinking_content += chunk['reasoning']
        
        # 处理普通文本内容
        if chunk.get('text'):
            if self.is_thinking:
                # 结束思考
                content += '</think>'
                self.is_thinking = False
                self.thinking_content = ''
            content += chunk['text']
        
        return content
    
    def convert_to_openai_format(self, raycast_chunk, model, is_stream=False):
        content = self.process_raycast_chunk(raycast_chunk)
        
        if is_stream:
            return {
                'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
                'object': 'chat.completion.chunk',
                'created': UtilsHelper.get_current_timestamp(),
                'model': model,
                'choices': [{
                    'index': 0,
                    'delta': {
                        'content': content
                    },
                    'finish_reason': None
                }]
            }
        else:
            return {
                'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
                'object': 'chat.completion',
                'created': UtilsHelper.get_current_timestamp(),
                'model': model,
                'choices': [{
                    'index': 0,
                    'message': {
                        'role': 'assistant',
                        'content': content
                    },
                    'finish_reason': 'stop'
                }],
                'usage': {
                    'prompt_tokens': 0,
                    'completion_tokens': 0,
                    'total_tokens': 0
                }
            }
    
    def finish_thinking(self):
        if self.is_thinking:
            self.is_thinking = False
            return '</think>'
        return ''

# ==================== API服务类 ====================
class RaycastAPIService:
    @classmethod
    def send_request(cls, raycast_request):
        headers = Config.get_raycast_headers()
        headers['x-raycast-timestamp'] = str(UtilsHelper.get_current_timestamp())
        
        print(f'发送到 Raycast: {json.dumps(raycast_request, indent=2, ensure_ascii=False)}')
        
        response = requests.post(
            Config.RAYCAST_CHAT_URL,
            headers=headers,
            json=raycast_request,
            stream=True,
            timeout=120
        )
        
        if not response.ok:
            error_text = response.text
            print(f'Raycast API 错误响应: {error_text}')
            raise Exception(f'Raycast API 响应错误: {response.status_code} {response.reason}')
        
        return response

# ==================== 处理函数 ====================
def handle_chat_completion(request_data):
    try:
        print(f'收到请求: {json.dumps(request_data, indent=2, ensure_ascii=False)}')
        
        # 转换请求格式
        raycast_request = MessageConverter.convert_to_raycast_format(request_data)
        
        # 发送请求到 Raycast
        response = RaycastAPIService.send_request(raycast_request)
        
        return response, request_data
        
    except Exception as error:
        print(f'代理错误: {error}')
        raise error

def process_stream_response(response, request_data):
    processor = ResponseProcessor()
    
    def generate():
        try:
            buffer = ''
            for chunk in response.iter_lines():
                chunk = chunk.decode("utf-8").strip()
                if chunk:
                    buffer += chunk + '\n'
                    lines = buffer.split('\n')
                    buffer = lines.pop() if lines else ''  
                    
                    for line in lines:
                        if line.strip():
                            try:
                                if line.startswith('data: '):
                                    data = line[6:]  
                                    if data == '[DONE]':
                                        # 检查是否需要关闭thinking标签
                                        finish_content = processor.finish_thinking()
                                        if finish_content:
                                            finish_response = processor.convert_to_openai_format(
                                                {'text': finish_content}, request_data['model'], True
                                            )
                                            yield f"data: {json.dumps(finish_response)}\n\n"
                                        yield 'data: [DONE]\n\n'
                                        return
                                    
                                    parsed = json.loads(data)
                                    openai_response = processor.convert_to_openai_format(
                                        parsed, request_data['model'], True
                                    )
                                    yield f"data: {json.dumps(openai_response)}\n\n"
                            except Exception as err:
                                print(f'解析流式响应错误: {err}, 原始行: {line}')
            
            yield 'data: [DONE]\n\n'
                    
        except Exception as err:
            print(f'流式响应错误: {err}')
            yield f'data: {json.dumps({"error": "流式响应处理错误"})}\n\n'
        finally:
            response.close()
    
    return generate()

def process_non_stream_response(response, request_data):
    processor = ResponseProcessor()
    full_content = ''
    
    try:
        buffer = ''
        for chunk in response.iter_lines():
            chunk = chunk.decode("utf-8").strip()
            if chunk:
                buffer += chunk + '\n'
                lines = buffer.split('\n')
                buffer = lines.pop() if lines else '' 
                
                for line in lines:
                    if line.strip():
                        try:
                            if line.startswith('data: '):
                                data = line[6:] 
                                if data == '[DONE]':
                                    break  # 结束处理
                                
                                parsed = json.loads(data)
                                content = processor.process_raycast_chunk(parsed)
                                full_content += content
                        except Exception as err:
                            print(f'解析非流式响应错误: {err}, 原始行: {line}')
        
        # 确保thinking标签正确关闭
        finish_content = processor.finish_thinking()
        full_content += finish_content
        
        return {
            'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
            'object': 'chat.completion',
            'created': UtilsHelper.get_current_timestamp(),
            'model': request_data['model'],
            'choices': [{
                'index': 0,
                'message': {
                    'role': 'assistant',
                    'content': full_content
                },
                'finish_reason': 'stop'
            }],
            'usage': {
                'prompt_tokens': 0,
                'completion_tokens': 0,
                'total_tokens': 0
            }
        }
        
    except Exception as err:
        print(f'非流式响应错误: {err}')
        raise err
    finally:
        response.close()

# ==================== 路由处理 ====================

@app.route('/v1/chat/completions', methods=['POST'])
@require_auth
def chat_completions():
    try:
        request_data = request.get_json()
        if not request_data:
            return jsonify({
                'error': {
                    'message': '请求数据为空',
                    'type': 'invalid_request',
                    'code': 'invalid_request'
                }
            }), 400
        
        is_stream = request_data.get('stream', False)
        
        # 在线程池中处理请求
        future = executor.submit(handle_chat_completion, request_data)
        response, req_data = future.result()
        
        if is_stream:
            return Response(
                stream_with_context(process_stream_response(response, req_data)),
                content_type='text/event-stream',
                headers={
                    'Cache-Control': 'no-cache',
                    'Connection': 'keep-alive',
                    'Access-Control-Allow-Origin': '*'
                }
            )
        else:
            future = executor.submit(process_non_stream_response, response, req_data)
            result = future.result()
            return jsonify(result)
            
    except Exception as error:
        return jsonify({
            'error': {
                'message': str(error) or '内部服务器错误',
                'type': 'internal_error',
                'code': 'internal_error'
            }
        }), 500

@app.route('/v1/models', methods=['GET'])
def list_models():
    models = [
        {
            'id': model,
            'object': 'model',
            'created': UtilsHelper.get_current_timestamp(),
            'owned_by': 'raycast-proxy'
        }
        for model in ModelMapper.get_all_models()
    ]
    
    return jsonify({
        'object': 'list',
        'data': models
    })

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({
        'status': 'ok',
        'timestamp': datetime.now().isoformat(),
        'models_count': len(ModelMapper.get_all_models()),
        'config': {
            'port': Config.PORT,
            'max_workers': Config.MAX_WORKERS,
            'auth_required': bool(Config.API_KEY)
        }
    })

@app.route('/', methods=['OPTIONS'])
@app.route('/v1/chat/completions', methods=['OPTIONS'])
@app.route('/v1/models', methods=['OPTIONS'])
def handle_options():
    return '', 200

if __name__ == '__main__':
    print(f'🚀 Raycast 代理服务器运行在端口 {Config.PORT}')
    print(f'🔗 OpenAI 兼容端点: http://localhost:{Config.PORT}/v1/chat/completions')
    print(f'📜 模型列表: http://localhost:{Config.PORT}/v1/models')
    print(f'⚡ 最大工作线程数: {Config.MAX_WORKERS}')
    
    # 使用支持多线程的WSGI服务器
    app.run(
        host='0.0.0.0',
        port=Config.PORT,
        debug=False,
        threaded=True,
        processes=1
    )