Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,396 Bytes
853528a 00143c1 853528a e5691f1 853528a bddfc93 853528a e5691f1 853528a 00143c1 853528a 0a1ff26 853528a 00143c1 853528a e5691f1 853528a f74a9a4 e5691f1 bd15327 f74a9a4 853528a f74a9a4 853528a bd15327 853528a bd15327 f74a9a4 1463a37 853528a 955bde4 1a5d31c 853528a 02fd033 15147fb 853528a f74a9a4 e5691f1 853528a f74a9a4 853528a f74a9a4 853528a f74a9a4 853528a f74a9a4 853528a 1463a37 853528a 1463a37 853528a 1463a37 853528a da56ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
import sys
import shutil
from datetime import datetime
import glob
import gc
import time
import spaces
from pi3.utils.geometry import se3_inverse, homogenize_points, depth_edge
from pi3.models.pi3 import Pi3
from pi3.utils.basic import load_images_as_tensor, write_ply
import trimesh
import matplotlib
from scipy.spatial.transform import Rotation
"""
Gradio utils
"""
def predictions_to_glb(
predictions,
conf_thres=50.0,
filter_by_frames="all",
show_cam=True,
) -> trimesh.Scene:
"""
Converts VGGT predictions to a 3D scene represented as a GLB file.
Args:
predictions (dict): Dictionary containing model predictions with keys:
- world_points: 3D point coordinates (S, H, W, 3)
- world_points_conf: Confidence scores (S, H, W)
- images: Input images (S, H, W, 3)
- extrinsic: Camera extrinsic matrices (S, 3, 4)
conf_thres (float): Percentage of low-confidence points to filter out (default: 50.0)
filter_by_frames (str): Frame filter specification (default: "all")
show_cam (bool): Include camera visualization (default: True)
Returns:
trimesh.Scene: Processed 3D scene containing point cloud and cameras
Raises:
ValueError: If input predictions structure is invalid
"""
if not isinstance(predictions, dict):
raise ValueError("predictions must be a dictionary")
if conf_thres is None:
conf_thres = 10
print("Building GLB scene")
selected_frame_idx = None
if filter_by_frames != "all" and filter_by_frames != "All":
try:
# Extract the index part before the colon
selected_frame_idx = int(filter_by_frames.split(":")[0])
except (ValueError, IndexError):
pass
pred_world_points = predictions["points"]
pred_world_points_conf = predictions.get("conf", np.ones_like(pred_world_points[..., 0]))
# Get images from predictions
images = predictions["images"]
# Use extrinsic matrices instead of pred_extrinsic_list
camera_poses = predictions["camera_poses"]
if selected_frame_idx is not None:
pred_world_points = pred_world_points[selected_frame_idx][None]
pred_world_points_conf = pred_world_points_conf[selected_frame_idx][None]
images = images[selected_frame_idx][None]
camera_poses = camera_poses[selected_frame_idx][None]
vertices_3d = pred_world_points.reshape(-1, 3)
# Handle different image formats - check if images need transposing
if images.ndim == 4 and images.shape[1] == 3: # NCHW format
colors_rgb = np.transpose(images, (0, 2, 3, 1))
else: # Assume already in NHWC format
colors_rgb = images
colors_rgb = (colors_rgb.reshape(-1, 3) * 255).astype(np.uint8)
conf = pred_world_points_conf.reshape(-1)
# Convert percentage threshold to actual confidence value
if conf_thres == 0.0:
conf_threshold = 0.0
else:
# conf_threshold = np.percentile(conf, conf_thres)
conf_threshold = conf_thres / 100
conf_mask = (conf >= conf_threshold) & (conf > 1e-5)
vertices_3d = vertices_3d[conf_mask]
colors_rgb = colors_rgb[conf_mask]
if vertices_3d is None or np.asarray(vertices_3d).size == 0:
vertices_3d = np.array([[1, 0, 0]])
colors_rgb = np.array([[255, 255, 255]])
scene_scale = 1
else:
# Calculate the 5th and 95th percentiles along each axis
lower_percentile = np.percentile(vertices_3d, 5, axis=0)
upper_percentile = np.percentile(vertices_3d, 95, axis=0)
# Calculate the diagonal length of the percentile bounding box
scene_scale = np.linalg.norm(upper_percentile - lower_percentile)
colormap = matplotlib.colormaps.get_cmap("gist_rainbow")
# Initialize a 3D scene
scene_3d = trimesh.Scene()
scene_3d_no_cam = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
scene_3d.add_geometry(point_cloud_data)
# Prepare 4x4 matrices for camera extrinsics
num_cameras = len(camera_poses)
if show_cam:
# Add camera models to the scene
for i in range(num_cameras):
camera_to_world = camera_poses[i]
rgba_color = colormap(i / num_cameras)
current_color = tuple(int(255 * x) for x in rgba_color[:3])
# integrate_camera_into_scene(scene_3d, camera_to_world, current_color, scene_scale)
integrate_camera_into_scene(scene_3d, camera_to_world, current_color, 1.) # fixed camera size
# Rotate scene for better visualize
align_rotation = np.eye(4)
align_rotation[:3, :3] = Rotation.from_euler("y", 100, degrees=True).as_matrix() # plane rotate
align_rotation[:3, :3] = align_rotation[:3, :3] @ Rotation.from_euler("x", 155, degrees=True).as_matrix() # roll
scene_3d.apply_transform(align_rotation)
print("GLB Scene built")
return scene_3d, [vertices_3d, colors_rgb]
def integrate_camera_into_scene(scene: trimesh.Scene, transform: np.ndarray, face_colors: tuple, scene_scale: float):
"""
Integrates a fake camera mesh into the 3D scene.
Args:
scene (trimesh.Scene): The 3D scene to add the camera model.
transform (np.ndarray): Transformation matrix for camera positioning.
face_colors (tuple): Color of the camera face.
scene_scale (float): Scale of the scene.
"""
cam_width = scene_scale * 0.05
cam_height = scene_scale * 0.1
# Create cone shape for camera
rot_45_degree = np.eye(4)
rot_45_degree[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
rot_45_degree[2, 3] = -cam_height
opengl_transform = get_opengl_conversion_matrix()
# Combine transformations
complete_transform = transform @ opengl_transform @ rot_45_degree
camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)
# Generate mesh for the camera
slight_rotation = np.eye(4)
slight_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()
vertices_combined = np.concatenate(
[
camera_cone_shape.vertices,
0.95 * camera_cone_shape.vertices,
transform_points(slight_rotation, camera_cone_shape.vertices),
]
)
vertices_transformed = transform_points(complete_transform, vertices_combined)
mesh_faces = compute_camera_faces(camera_cone_shape)
# Add the camera mesh to the scene
camera_mesh = trimesh.Trimesh(vertices=vertices_transformed, faces=mesh_faces)
camera_mesh.visual.face_colors[:, :3] = face_colors
scene.add_geometry(camera_mesh)
def get_opengl_conversion_matrix() -> np.ndarray:
"""
Constructs and returns the OpenGL conversion matrix.
Returns:
numpy.ndarray: A 4x4 OpenGL conversion matrix.
"""
# Create an identity matrix
matrix = np.identity(4)
# Flip the y and z axes
matrix[1, 1] = -1
matrix[2, 2] = -1
return matrix
def transform_points(transformation: np.ndarray, points: np.ndarray, dim: int = None) -> np.ndarray:
"""
Applies a 4x4 transformation to a set of points.
Args:
transformation (np.ndarray): Transformation matrix.
points (np.ndarray): Points to be transformed.
dim (int, optional): Dimension for reshaping the result.
Returns:
np.ndarray: Transformed points.
"""
points = np.asarray(points)
initial_shape = points.shape[:-1]
dim = dim or points.shape[-1]
# Apply transformation
transformation = transformation.swapaxes(-1, -2) # Transpose the transformation matrix
points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]
# Reshape the result
result = points[..., :dim].reshape(*initial_shape, dim)
return result
def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
"""
Computes the faces for the camera mesh.
Args:
cone_shape (trimesh.Trimesh): The shape of the camera cone.
Returns:
np.ndarray: Array of faces for the camera mesh.
"""
# Create pseudo cameras
faces_list = []
num_vertices_cone = len(cone_shape.vertices)
for face in cone_shape.faces:
if 0 in face:
continue
v1, v2, v3 = face
v1_offset, v2_offset, v3_offset = face + num_vertices_cone
v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone
faces_list.extend(
[
(v1, v2, v2_offset),
(v1, v1_offset, v3),
(v3_offset, v2, v3),
(v1, v2, v2_offset_2),
(v1, v1_offset_2, v3),
(v3_offset_2, v2, v3),
]
)
faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
return np.array(faces_list)
# -------------------------------------------------------------------------
# 1) Core model inference
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_model(target_dir, model) -> dict:
print(f"Processing images from {target_dir}")
# Device check
device = "cuda" if torch.cuda.is_available() else "cpu"
if not torch.cuda.is_available():
raise ValueError("CUDA is not available. Check your environment.")
# Move model to device
model = model.to(device)
model.eval()
# Load and preprocess images
image_names = glob.glob(os.path.join(target_dir, "images", "*"))
image_names = sorted(image_names)
print(f"Found {len(image_names)} images")
if len(image_names) == 0:
raise ValueError("No images found. Check your upload.")
# interval = 10 if target_dir.endswith('.mp4') else 1
interval = 1
imgs = load_images_as_tensor(os.path.join(target_dir, "images"), interval=interval).to(device) # (N, 3, H, W)
# 3. Infer
print("Running model inference...")
dtype = torch.bfloat16
with torch.no_grad():
with torch.amp.autocast('cuda', dtype=dtype):
predictions = model(imgs[None]) # Add batch dimension
predictions['images'] = imgs[None].permute(0, 1, 3, 4, 2)
predictions['conf'] = torch.sigmoid(predictions['conf'])
edge = depth_edge(predictions['local_points'][..., 2], rtol=0.03)
predictions['conf'][edge] = 0.0
del predictions['local_points']
# # transform to first camera coordinate
# predictions['points'] = torch.einsum('bij, bnhwj -> bnhwi', se3_inverse(predictions['camera_poses'][:, 0]), homogenize_points(predictions['points']))[..., :3]
# predictions['camera_poses'] = torch.einsum('bij, bnjk -> bnik', se3_inverse(predictions['camera_poses'][:, 0]), predictions['camera_poses'])
# Convert tensors to numpy
for key in predictions.keys():
if isinstance(predictions[key], torch.Tensor):
predictions[key] = predictions[key].cpu().numpy().squeeze(0) # remove batch dimension
# Clean up
torch.cuda.empty_cache()
return predictions
# -------------------------------------------------------------------------
# 2) Handle uploaded video/images --> produce target_dir + images
# -------------------------------------------------------------------------
def handle_uploads(input_video, input_images, interval=-1):
"""
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
images or extracted frames from video into it. Return (target_dir, image_paths).
"""
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Create a unique folder name
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
target_dir = f"input_images_{timestamp}"
target_dir_images = os.path.join(target_dir, "images")
# Clean up if somehow that folder already exists
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir, exist_ok=True)
os.makedirs(target_dir_images, exist_ok=True)
image_paths = []
# --- Handle images ---
if input_images is not None:
if interval is not None and interval > 0:
input_images = input_images[::interval]
for file_data in input_images:
if isinstance(file_data, dict) and "name" in file_data:
file_path = file_data["name"]
else:
file_path = file_data
dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
shutil.copy(file_path, dst_path)
image_paths.append(dst_path)
# --- Handle video ---
if input_video is not None:
if isinstance(input_video, dict) and "name" in input_video:
video_path = input_video["name"]
else:
video_path = input_video
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
if interval is not None and interval > 0:
frame_interval = interval
else:
frame_interval = int(fps * 1) # 1 frame/sec
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
if count % frame_interval == 0:
image_path = os.path.join(target_dir_images, f"{video_frame_num:06}.png")
cv2.imwrite(image_path, frame)
image_paths.append(image_path)
video_frame_num += 1
# Sort final images for gallery
image_paths = sorted(image_paths)
end_time = time.time()
print(f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds")
return target_dir, image_paths
# -------------------------------------------------------------------------
# 3) Update gallery on upload
# -------------------------------------------------------------------------
def update_gallery_on_upload(input_video, input_images, interval=-1):
"""
Whenever user uploads or changes files, immediately handle them
and show in the gallery. Return (target_dir, image_paths).
If nothing is uploaded, returns "None" and empty list.
"""
if not input_video and not input_images:
return None, None, None, None
target_dir, image_paths = handle_uploads(input_video, input_images, interval=interval)
return None, target_dir, image_paths, "Upload complete. Click 'Reconstruct' to begin 3D processing."
# -------------------------------------------------------------------------
# 4) Reconstruction: uses the target_dir plus any viz parameters
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def gradio_demo(
target_dir,
conf_thres=3.0,
frame_filter="All",
show_cam=True,
):
"""
Perform reconstruction using the already-created target_dir/images.
"""
if not os.path.isdir(target_dir) or target_dir == "None":
return None, "No valid target directory found. Please upload first.", None, None
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Prepare frame_filter dropdown
target_dir_images = os.path.join(target_dir, "images")
all_files = sorted(os.listdir(target_dir_images)) if os.path.isdir(target_dir_images) else []
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
frame_filter_choices = ["All"] + all_files
print("Running run_model...")
with torch.no_grad():
predictions = run_model(target_dir, model)
# Save predictions
prediction_save_path = os.path.join(target_dir, "predictions.npz")
np.savez(prediction_save_path, **predictions)
# Handle None frame_filter
if frame_filter is None:
frame_filter = "All"
# Build a GLB file name
glbfile = os.path.join(
target_dir,
f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}.glb",
)
# Convert predictions to GLB
glbscene, pcd = predictions_to_glb(
predictions,
conf_thres=conf_thres,
filter_by_frames=frame_filter,
show_cam=show_cam,
)
glbscene.export(file_obj=glbfile)
# we save a .ply file too
plyfile = glbfile.replace('.glb', '.ply')
write_ply(pcd[0], pcd[1]/255, path=plyfile)
print(f'Saved .ply file to {plyfile}')
# Cleanup
del predictions
gc.collect()
torch.cuda.empty_cache()
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
log_msg = f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
return glbfile, plyfile, log_msg, gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True)
# -------------------------------------------------------------------------
# 5) Helper functions for UI resets + re-visualization
# -------------------------------------------------------------------------
def clear_fields():
"""
Clears the 3D viewer, the stored target_dir, and empties the gallery.
"""
return None
def update_log():
"""
Display a quick log message while waiting.
"""
return "Loading and Reconstructing..."
def update_visualization(
target_dir, conf_thres, frame_filter, show_cam, is_example
):
"""
Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
and return it for the 3D viewer. If is_example == "True", skip.
"""
# If it's an example click, skip as requested
if is_example == "True":
return None, "No reconstruction available. Please click the Reconstruct button first."
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return None, "No reconstruction available. Please click the Reconstruct button first."
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return None, f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first."
key_list = [
"images",
"points",
"conf",
"camera_poses",
]
loaded = np.load(predictions_path)
predictions = {key: np.array(loaded[key]) for key in key_list}
glbfile = os.path.join(
target_dir,
f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}.glb",
)
if not os.path.exists(glbfile):
glbscene, pcd = predictions_to_glb(
predictions,
conf_thres=conf_thres,
filter_by_frames=frame_filter,
show_cam=show_cam,
)
glbscene.export(file_obj=glbfile)
# we save a .ply file too
plyfile = glbfile.replace('.glb', '.ply')
write_ply(pcd[0], pcd[1]/255, path=plyfile)
print(f'Saved .ply file to {plyfile}')
return glbfile, plyfile, "Updating Visualization"
# -------------------------------------------------------------------------
# Example images
# -------------------------------------------------------------------------
house = "examples/gradio_examples/house.mp4"
man_walking_long = "examples/gradio_examples/man_walking_long.mp4"
parkour = "examples/gradio_examples/parkour.mp4"
valley = "examples/gradio_examples/valley.mp4"
cartoon_horse = "examples/cartoon_horse.mp4"
parkour_long = "examples/parkour_long.mp4"
skating = "examples/skating.mp4"
skiing = "examples/skiing.mp4"
# -------------------------------------------------------------------------
# 6) Build Gradio UI
# -------------------------------------------------------------------------
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Initializing and loading Pi3 model...")
model = Pi3.from_pretrained("yyfz233/Pi3")
# model.load_state_dict(torch.load('ckpts/pi3.pt', weights_only=False, map_location=device))
model.eval()
model = model.to(device)
theme = gr.themes.Ocean()
theme.set(
checkbox_label_background_fill_selected="*button_primary_background_fill",
checkbox_label_text_color_selected="*button_primary_text_color",
)
with gr.Blocks(
theme=theme,
css="""
/* --- Google 字体导入 (科技感字体) --- */
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700;900&family=Rajdhani:wght@400;500;700&display=swap');
/* --- 动画关键帧 --- */
/* 背景动态星云效果 */
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* 标题和状态文字的霓虹灯光效 */
@keyframes text-glow {
0%, 100% {
text-shadow: 0 0 10px #0ea5e9, 0 0 20px #0ea5e9, 0 0 30px #4f46e5, 0 0 40px #4f46e5;
}
50% {
text-shadow: 0 0 5px #0ea5e9, 0 0 10px #0ea5e9, 0 0 15px #4f46e5, 0 0 20px #4f46e5;
}
}
/* 卡片边框呼吸光晕 */
@keyframes border-glow {
0% { border-color: rgba(79, 70, 229, 0.5); box-shadow: 0 0 15px rgba(79, 70, 229, 0.3); }
50% { border-color: rgba(14, 165, 233, 0.8); box-shadow: 0 0 25px rgba(14, 165, 233, 0.5); }
100% { border-color: rgba(79, 70, 229, 0.5); box-shadow: 0 0 15px rgba(79, 70, 229, 0.3); }
}
/* --- 全局样式:宇宙黑暗主题 --- */
.gradio-container {
font-family: 'Rajdhani', sans-serif;
background: linear-gradient(-45deg, #020617, #111827, #082f49, #4f46e5);
background-size: 400% 400%;
animation: gradient-animation 20s ease infinite;
color: #9ca3af;
}
/* --- 全局文字颜色修复 (解决Light Mode问题) --- */
/* 1. 修复全局、标签和输入框内的文字颜色 */
.gradio-container, .gr-label label, .gr-input, input, textarea, .gr-check-radio label {
color: #d1d5db !important; /* 设置一个柔和的浅灰色 */
}
/* 2. 修复 Examples 表头 (这是您问题的核心) */
thead th {
color: white !important;
background-color: #1f2937 !important; /* 同时给表头一个背景色,视觉效果更好 */
}
/* 3. 修复 Examples 表格内容文字 */
tbody td {
color: #d1d5db !important;
}
/* --- 状态信息 & 输出标题样式 (custom-log) ✨ --- */
.custom-log * {
font-family: 'Orbitron', sans-serif;
font-size: 24px !important;
font-weight: 700 !important;
text-align: center !important;
color: transparent !important;
background-image: linear-gradient(120deg, #93c5fd, #6ee7b7, #fde047);
background-size: 300% 300%;
-webkit-background-clip: text;
background-clip: text;
animation: gradient-animation 8s ease-in-out infinite, text-glow 3s ease-in-out infinite;
padding: 10px 0;
}
/* --- UI 卡片/分组样式 (玻璃拟态) 💎 --- */
.gr-block.gr-group {
background-color: rgba(17, 24, 39, 0.6);
backdrop-filter: blur(10px);
-webkit-backdrop-filter: blur(10px);
border: 1px solid rgba(55, 65, 81, 0.5);
border-radius: 16px;
box-shadow: 0 8px 32px 0 rgba(0, 0, 0, 0.37);
transition: all 0.3s ease;
/* 应用边框呼吸光晕动画 */
animation: border-glow 5s infinite alternate;
}
.gr-block.gr-group:hover {
box-shadow: 0 0 25px rgba(14, 165, 233, 0.4);
border-color: rgba(14, 165, 233, 0.6);
}
/* --- 酷炫按钮样式 🚀 --- */
.gr-button {
background: linear-gradient(to right, #4f46e5, #7c3aed, #0ea5e9) !important;
background-size: 200% auto !important;
color: white !important;
font-weight: bold !important;
border: none !important;
border-radius: 10px !important;
box-shadow: 0 4px 15px 0 rgba(79, 70, 229, 0.5) !important;
transition: all 0.4s ease-in-out !important;
font-family: 'Orbitron', sans-serif !important;
text-transform: uppercase;
letter-spacing: 1px;
}
.gr-button:hover {
background-position: right center !important;
box-shadow: 0 4px 20px 0 rgba(14, 165, 233, 0.6) !important;
transform: translateY(-3px) scale(1.02);
}
.gr-button.primary {
/* 主按钮增加呼吸光晕动画 */
animation: border-glow 3s infinite alternate;
}
""",
) as demo:
# Instead of gr.State, we use a hidden Textbox:
is_example = gr.Textbox(label="is_example", visible=False, value="None")
num_images = gr.Textbox(label="num_images", visible=False, value="None")
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
gr.HTML(
"""
<style>
/* --- 介绍文字区专属样式 --- */
.intro-content { font-size: 17px !important; line-height: 1.7; color: #C0C0C0 !important; }
/* 额外为 p 标签添加规则,确保覆盖 */
.intro-content p { color: #C0C0C0 !important; }
.intro-content h1 {
font-family: 'Orbitron', sans-serif; font-size: 2.8em !important; font-weight: 900;
text-align: center; color: #C0C0C0 !important; animation: text-glow 4s ease-in-out infinite; margin-bottom: 0px;
}
.intro-content .pi-symbol {
display: inline-block; color: transparent;
background-image: linear-gradient(120deg, #38bdf8, #818cf8, #c084fc);
-webkit-background-clip: text; background-clip: text;
text-shadow: 0 0 15px rgba(129, 140, 248, 0.5);
}
.intro-content .subtitle { text-align: center; font-size: 1.1em; margin-bottom: 2rem; }
.intro-content a.themed-link {
color: #C0C0C0 !important; text-decoration: none; font-weight: 700; transition: all 0.3s ease;
}
.intro-content a.themed-link:hover { color: #EAEAEA !important; text-shadow: 0 0 8px rgba(234, 234, 234, 0.7); }
.intro-content h3 {
font-family: 'Orbitron', sans-serif; color: #C0C0C0 !important; text-transform: uppercase;
letter-spacing: 2px; border-bottom: 1px solid #374151; padding-bottom: 8px; margin-top: 25px;
}
.intro-content ol { list-style: none; padding-left: 0; counter-reset: step-counter; }
.intro-content ol li {
counter-increment: step-counter; margin-bottom: 15px; padding-left: 45px; position: relative;
color: #C0C0C0 !important; /* 确保列表项文字也是银白色 */
}
/* 自定义酷炫列表数字 */
.intro-content ol li::before {
content: counter(step-counter); position: absolute; left: 0; top: 0;
width: 30px; height: 30px; background: linear-gradient(135deg, #1e3a8a, #4f46e5);
border-radius: 50%; color: white; font-weight: 700; font-family: 'Orbitron', sans-serif;
display: flex; align-items: center; justify-content: center;
box-shadow: 0 0 10px rgba(79, 70, 229, 0.5);
}
.intro-content strong { color: #C0C0C0 !important; font-weight: 700; }
.intro-content .performance-note {
background-color: rgba(14, 165, 233, 0.1); border-left: 4px solid #0ea5e9;
padding: 15px; border-radius: 8px; margin-top: 20px;
}
/* 确保提示框内的文字也生效 */
.intro-content .performance-note p { color: #C0C0C0 !important; }
</style>
<div class="intro-content">
<h1>🌌 <span class="pi-symbol">π³</span>: Scalable Permutation-Equivariant Visual Geometry Learning</h1>
<p class="subtitle">
<a class="themed-link" href="https://github.com/yyfz/Pi3">🐙 GitHub Repository</a> |
<a class="themed-link" href="https://yyfz.github.io/pi3/">🚀 Project Page</a>
</p>
<p>Transform your videos or image collections into detailed 3D models. The <strong class="pi-symbol">π³</strong> model processes your visual data to generate a rich 3D point cloud and calculate the corresponding camera perspectives.</p>
<h3>How to Use:</h3>
<ol>
<li><strong>Provide Your Media:</strong> Upload a video or image set. You can specify a sampling interval below. By default, videos are sampled at 1 frame per second, and for image sets, every image is used (interval of 1). Your inputs will be displayed in the "Preview" gallery.</li>
<li><strong>Generate the 3D Model:</strong> Press the "Reconstruct" button to initiate the process.</li>
<li><strong>Explore and Refine Your Model:</strong> The generated 3D model will appear in the viewer on the right. Interact with it by rotating, panning, and zooming. You can also download the model as a GLB file. For further refinement, use the options below the viewer to adjust point confidence, filter by frame, or toggle camera visibility.</li>
</ol>
<div class="performance-note">
<p><strong>A Quick Note on Performance:</strong> The core processing by <strong class="pi-symbol">π³</strong> is incredibly fast, typically finishing in under a second. However, rendering the final 3D point cloud can take longer, depending on the complexity of the scene and the capabilities of the rendering engine.</p>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### 1. Upload Media")
input_video = gr.Video(label="Upload Video", interactive=True)
input_images = gr.File(file_count="multiple", label="Or Upload Images", interactive=True)
interval = gr.Number(None, label='Frame/Image Interval', info="Sampling interval. Video default: 1 FPS. Image default: 1 (all images).")
image_gallery = gr.Gallery(
label="Image Preview",
columns=4,
height="300px",
show_download_button=True,
object_fit="contain",
preview=True,
)
with gr.Column(scale=2):
gr.Markdown("### 2. View Reconstruction")
log_output = gr.Markdown("Please upload media and click Reconstruct.", elem_classes=["custom-log"])
reconstruction_output = gr.Model3D(height=480, zoom_speed=0.5, pan_speed=0.5, label="3D Output")
# optional to download .ply file
download_ply_output = gr.File(height=100, label="Download .ply Result", interactive=False)
with gr.Row():
submit_btn = gr.Button("Reconstruct", scale=3, variant="primary")
clear_btn = gr.ClearButton(
scale=1
)
with gr.Group():
gr.Markdown("### 3. Adjust Visualization")
with gr.Row():
conf_thres = gr.Slider(minimum=0, maximum=100, value=20, step=0.1, label="Confidence Threshold (%)")
show_cam = gr.Checkbox(label="Show Cameras", value=True)
frame_filter = gr.Dropdown(choices=["All"], value="All", label="Show Points from Frame")
# Set clear button targets
clear_btn.add([input_video, input_images, reconstruction_output, log_output, target_dir_output, image_gallery, interval])
# ---------------------- Examples section ----------------------
examples = [
[skating, None, 10, 20, True],
[parkour_long, None, 20, 10, True],
[cartoon_horse, None, 10, 20, True],
[skiing, None, 30, 70, True],
[man_walking_long, None, 1, 50, True],
[house, None, 1, 20, True],
[parkour, None, 1, 20, True],
[valley, None, 1, 20, True],
]
def example_pipeline(
input_video,
input_images,
interval,
conf_thres,
show_cam,
):
"""
1) Copy example images to new target_dir
2) Reconstruct
3) Return model3D + logs + new_dir + updated dropdown + gallery
We do NOT return is_example. It's just an input.
"""
target_dir, image_paths = handle_uploads(input_video, input_images, interval)
# Always use "All" for frame_filter in examples
frame_filter = "All"
glbfile, ply_file, log_msg, dropdown = gradio_demo(
target_dir, conf_thres, frame_filter, show_cam
)
return glbfile, ply_file, log_msg, target_dir, dropdown, image_paths
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
gr.Examples(
examples=examples,
inputs=[
input_video,
input_images,
interval,
conf_thres,
show_cam,
],
outputs=[reconstruction_output, download_ply_output, log_output, target_dir_output, frame_filter, image_gallery],
fn=example_pipeline,
cache_examples=False,
examples_per_page=50,
run_on_click=False,
)
# -------------------------------------------------------------------------
# "Reconstruct" button logic:
# - Clear fields
# - Update log
# - gradio_demo(...) with the existing target_dir
# - Then set is_example = "False"
# -------------------------------------------------------------------------
submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then(
fn=update_log, inputs=[], outputs=[log_output]
).then(
fn=gradio_demo,
inputs=[
target_dir_output,
conf_thres,
frame_filter,
show_cam,
],
outputs=[reconstruction_output, download_ply_output, log_output, frame_filter],
).then(
fn=lambda: "False", inputs=[], outputs=[is_example] # set is_example to "False"
)
# -------------------------------------------------------------------------
# Real-time Visualization Updates
# -------------------------------------------------------------------------
conf_thres.change(
update_visualization,
[
target_dir_output,
conf_thres,
frame_filter,
show_cam,
is_example,
],
[reconstruction_output, download_ply_output, log_output],
)
frame_filter.change(
update_visualization,
[
target_dir_output,
conf_thres,
frame_filter,
show_cam,
is_example,
],
[reconstruction_output, download_ply_output, log_output],
)
show_cam.change(
update_visualization,
[
target_dir_output,
conf_thres,
frame_filter,
show_cam,
is_example,
],
[reconstruction_output, download_ply_output, log_output],
)
# -------------------------------------------------------------------------
# Auto-update gallery whenever user uploads or changes their files
# -------------------------------------------------------------------------
input_video.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, interval],
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
)
input_images.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, interval],
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
)
demo.queue(max_size=20).launch(show_error=True, share=True)
|