Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import BertModel, BertConfig, BertTokenizer | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import huggingface_hub | |
| from huggingface_hub import hf_hub_download | |
| from preprocessing import * | |
| modelName = 'HooshvareLab/bert-fa-base-uncased' | |
| class_names = ['negative', 'neutral', 'positive'] | |
| label2id = {label: i for i, label in enumerate(class_names)} | |
| id2label = {v: k for k, v in label2id.items()} | |
| config = BertConfig.from_pretrained( | |
| modelName, | |
| num_labels=len(class_names), | |
| id2label=id2label, | |
| label2id=label2id) | |
| path="HooshvareLab-bert-fa-base-uncased-3class-best-epoch-weight-decay=.001.bin" | |
| downloadedModelFile = hf_hub_download(repo_id="zArabi/Persian-Sentiment-Analysis", filename=path) | |
| loaded_model = torch.load(downloadedModelFile,map_location="cpu") | |
| loaded_model.eval() | |
| tokenizer = BertTokenizer.from_pretrained(modelName) | |
| max_len=512 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def predict(text): | |
| text = cleaning(text) | |
| encoding = tokenizer.encode_plus( | |
| text, | |
| max_length=max_len, | |
| truncation=True, | |
| padding="max_length", | |
| add_special_tokens=True, # Add '[CLS]' and '[SEP]' | |
| return_token_type_ids=True, | |
| return_attention_mask=True, | |
| return_tensors='pt', # Return PyTorch tensors | |
| ) | |
| input_ids = encoding["input_ids"].to(device) | |
| attention_mask = encoding["attention_mask"].to(device) | |
| outputs = loaded_model(input_ids, attention_mask) | |
| probs = F.softmax(outputs,dim=1) | |
| values, indices = torch.max(probs, dim=1) | |
| data = { | |
| 'comments': text, | |
| 'preds': indices.cpu().numpy()[0], | |
| 'label': class_names[indices.cpu().numpy()[0]], | |
| 'probablities': {class_names[i] : round(probs[0][i].item(),3) for i in range(len(probs[0]))} | |
| } | |
| return {class_names[i] : round(probs[0][i].item(),3) for i in range(len(probs[0]))} | |
| gr.Interface( | |
| predict, | |
| inputs=gr.Textbox(label="Explore your sentence!",lines=2, placeholder="Type Here..."), | |
| outputs=gr.outputs.Label(num_top_classes=3), | |
| title="How are feeling?!", | |
| ).launch() |