Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 5 |
|
| 6 |
-
def predict(
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
gr.Interface(
|
| 11 |
predict,
|
| 12 |
-
inputs=gr.
|
| 13 |
-
outputs=gr.outputs.Label(num_top_classes=
|
| 14 |
-
title="
|
| 15 |
).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BertModel, BertConfig
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import huggingface_hub
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
huggingface_hub.Repository = 'zArabi/Persian-Sentiment-Analysis'
|
| 9 |
+
|
| 10 |
+
class SentimentModel(nn.Module):
|
| 11 |
+
def __init__(self, config):
|
| 12 |
+
super(SentimentModel, self).__init__()
|
| 13 |
+
self.bert = BertModel.from_pretrained(modelName, return_dict=False)
|
| 14 |
+
self.dropout = nn.Dropout(0.3)
|
| 15 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 16 |
+
|
| 17 |
+
def forward(self, input_ids, attention_mask):
|
| 18 |
+
_, pooled_output = self.bert(
|
| 19 |
+
input_ids=input_ids,
|
| 20 |
+
attention_mask=attention_mask)
|
| 21 |
+
pooled_output = self.dropout(pooled_output)
|
| 22 |
+
logits = self.classifier(pooled_output)
|
| 23 |
+
return logits
|
| 24 |
+
|
| 25 |
+
modelName = 'HooshvareLab/bert-fa-base-uncased'
|
| 26 |
+
class_names = ['negative', 'neutral', 'positive']
|
| 27 |
+
label2id = {label: i for i, label in enumerate(class_names)}
|
| 28 |
+
id2label = {v: k for k, v in label2id.items()}
|
| 29 |
+
|
| 30 |
+
config = BertConfig.from_pretrained(
|
| 31 |
+
modelName,
|
| 32 |
+
num_labels=len(class_names),
|
| 33 |
+
id2label=id2label,
|
| 34 |
+
label2id=label2id)
|
| 35 |
+
|
| 36 |
+
downloadedModelFile = hf_hub_download(repo_id="zArabi/Persian-Sentiment-Analysis", filename="persianModel")
|
| 37 |
+
loaded_model = torch.load(downloadedModelFile)
|
| 38 |
+
|
| 39 |
+
max_len=512
|
| 40 |
|
| 41 |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 42 |
|
| 43 |
+
def predict(text):
|
| 44 |
+
text = cleaning(text)
|
| 45 |
+
encoding = tokenizer.encode_plus(
|
| 46 |
+
sample_text,
|
| 47 |
+
max_length=max_len,
|
| 48 |
+
truncation=True,
|
| 49 |
+
padding="max_length",
|
| 50 |
+
add_special_tokens=True, # Add '[CLS]' and '[SEP]'
|
| 51 |
+
return_token_type_ids=True,
|
| 52 |
+
return_attention_mask=True,
|
| 53 |
+
return_tensors='pt', # Return PyTorch tensors
|
| 54 |
+
)
|
| 55 |
+
input_ids = encoding["input_ids"].to(device)
|
| 56 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 57 |
+
outputs = loaded_model (input_ids, attention_mask)
|
| 58 |
+
probs = F.softmax(outputs,dim=1)
|
| 59 |
+
values, indices = torch.max(probs, dim=1)
|
| 60 |
+
data = {
|
| 61 |
+
'comments': sample_text,
|
| 62 |
+
'preds': indices.cpu().numpy()[0],
|
| 63 |
+
'label': class_names[indices.cpu().numpy()[0]],
|
| 64 |
+
'probablities': {class_names[i] : round(probs[0][i].item(),3) for i in range(len(probs[0]))}
|
| 65 |
+
}
|
| 66 |
+
return data
|
| 67 |
|
| 68 |
gr.Interface(
|
| 69 |
predict,
|
| 70 |
+
inputs=gr.Textbox(label="Explore your sentence!",lines=2, placeholder="Type Here..."),
|
| 71 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
| 72 |
+
title="What are feeling?!",
|
| 73 |
).launch()
|