chore: update
Browse files
app.py
CHANGED
|
@@ -470,26 +470,25 @@ with demo:
|
|
| 470 |
|
| 471 |
with gr.Accordion("What is encrypted anonymization?", open=False):
|
| 472 |
gr.Markdown(
|
| 473 |
-
"""Anonymization is the process of removing personally identifiable information (PII)
|
| 474 |
-
from
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
third-party access to the raw data. Once the data is anonymized, it can safely be sent
|
| 482 |
-
to GenAI services such as ChatGPT.
|
| 483 |
"""
|
| 484 |
)
|
| 485 |
|
| 486 |
########################## Key Gen Part ##########################
|
| 487 |
|
| 488 |
gr.Markdown(
|
| 489 |
-
"## Step 1:
|
| 490 |
-
"""In FHE
|
| 491 |
-
|
| 492 |
-
a server to
|
|
|
|
| 493 |
"""
|
| 494 |
)
|
| 495 |
|
|
@@ -504,28 +503,19 @@ with demo:
|
|
| 504 |
########################## Main document Part ##########################
|
| 505 |
|
| 506 |
gr.Markdown("<hr />")
|
| 507 |
-
gr.Markdown("## Step 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
with gr.Row():
|
| 510 |
with gr.Column():
|
| 511 |
gr.Markdown("**Original document:**")
|
| 512 |
-
gr.Markdown(
|
| 513 |
-
"""This document was retrieved from the
|
| 514 |
-
[Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.
|
| 515 |
|
| 516 |
-
You can select and deselect sentences to customize the document that will be used
|
| 517 |
-
as the initial prompt for ChatGPT in step 5.
|
| 518 |
-
"""
|
| 519 |
-
)
|
| 520 |
with gr.Column():
|
| 521 |
-
gr.Markdown("**
|
| 522 |
-
|
| 523 |
-
"""You can see below the anonymized text, replaced with hexademical strings, that
|
| 524 |
-
will be sent to ChatGPT.
|
| 525 |
-
|
| 526 |
-
ChatGPT will then be able to answer any queries about the document.
|
| 527 |
-
"""
|
| 528 |
-
)
|
| 529 |
|
| 530 |
with gr.Row():
|
| 531 |
with gr.Column():
|
|
@@ -549,12 +539,10 @@ with demo:
|
|
| 549 |
########################## User Query Part ##########################
|
| 550 |
|
| 551 |
gr.Markdown("<hr />")
|
| 552 |
-
gr.Markdown("## Step
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
<span style='color:grey'>“Queries examples”</span>" or craft a custom question in
|
| 557 |
-
the <span style='color:grey'>“Customized query”</span>" text box.
|
| 558 |
|
| 559 |
Remain concise and relevant to the context. Any off-topic query will not be processed.
|
| 560 |
"""
|
|
@@ -565,13 +553,13 @@ with demo:
|
|
| 565 |
|
| 566 |
with gr.Column(scale=5):
|
| 567 |
default_query_box = gr.Dropdown(
|
| 568 |
-
list(DEFAULT_QUERIES.values()), label="
|
| 569 |
)
|
| 570 |
|
| 571 |
gr.Markdown("Or")
|
| 572 |
|
| 573 |
query_box = gr.Textbox(
|
| 574 |
-
value="
|
| 575 |
)
|
| 576 |
|
| 577 |
default_query_box.change(
|
|
@@ -582,7 +570,7 @@ with demo:
|
|
| 582 |
|
| 583 |
with gr.Column(scale=1, min_width=6):
|
| 584 |
gr.HTML("<div style='height: 77px;'></div>")
|
| 585 |
-
encrypt_btn = gr.Button("Encrypt
|
| 586 |
# gr.HTML("<div style='height: 50px;'></div>")
|
| 587 |
|
| 588 |
with gr.Column(scale=5):
|
|
@@ -594,15 +582,15 @@ with demo:
|
|
| 594 |
########################## FHE processing Part ##########################
|
| 595 |
|
| 596 |
gr.Markdown("<hr />")
|
| 597 |
-
gr.Markdown("## Step
|
| 598 |
gr.Markdown(
|
| 599 |
-
"""
|
| 600 |
-
to perform the anonymization on encrypted data. When the computation is done, the
|
| 601 |
-
will return the result to the client for decryption.
|
| 602 |
"""
|
| 603 |
)
|
| 604 |
|
| 605 |
-
run_fhe_btn = gr.Button("Anonymize
|
| 606 |
|
| 607 |
anonymized_text_output = gr.Textbox(
|
| 608 |
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
|
|
|
|
| 470 |
|
| 471 |
with gr.Accordion("What is encrypted anonymization?", open=False):
|
| 472 |
gr.Markdown(
|
| 473 |
+
"""Anonymization is the process of removing personally identifiable information (PII) data
|
| 474 |
+
from a document in order to protect individual privacy.
|
| 475 |
+
|
| 476 |
+
Encrypted anonymization using Fully Homomorphic Encryption (FHE) solves issues when
|
| 477 |
+
deploying such tool through an untrusted cloud service, as Fully Homomorphic Encryption
|
| 478 |
+
(FHE) allows such services to anonymize personally identifiable information (PII) on an
|
| 479 |
+
encrypted document. Once the data is anonymized, it can safely be sent to LLM services such
|
| 480 |
+
as ChatGPT.
|
|
|
|
|
|
|
| 481 |
"""
|
| 482 |
)
|
| 483 |
|
| 484 |
########################## Key Gen Part ##########################
|
| 485 |
|
| 486 |
gr.Markdown(
|
| 487 |
+
"## Step 1: Generate the keys\n\n"
|
| 488 |
+
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first
|
| 489 |
+
type, called secret keys, are used to encrypt and decrypt the user's data. The second type,
|
| 490 |
+
called evaluation keys, enable a server to work on the encrypted data without seeing the
|
| 491 |
+
actual data.
|
| 492 |
"""
|
| 493 |
)
|
| 494 |
|
|
|
|
| 503 |
########################## Main document Part ##########################
|
| 504 |
|
| 505 |
gr.Markdown("<hr />")
|
| 506 |
+
gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n"
|
| 507 |
+
"""To make it simple, we pre-compiled the following document, but you are free to choose
|
| 508 |
+
on which part you want to run this example.
|
| 509 |
+
"""
|
| 510 |
+
)
|
| 511 |
|
| 512 |
with gr.Row():
|
| 513 |
with gr.Column():
|
| 514 |
gr.Markdown("**Original document:**")
|
|
|
|
|
|
|
|
|
|
| 515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
with gr.Column():
|
| 517 |
+
gr.Markdown("**Encrypted document:**")
|
| 518 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
|
| 520 |
with gr.Row():
|
| 521 |
with gr.Column():
|
|
|
|
| 539 |
########################## User Query Part ##########################
|
| 540 |
|
| 541 |
gr.Markdown("<hr />")
|
| 542 |
+
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
|
| 543 |
+
"""Please choose from the predefined options in
|
| 544 |
+
<span style='color:grey'>“Prompt examples”</span>" or craft a custom question in
|
| 545 |
+
the <span style='color:grey'>“Customized prompt”</span>" text box.
|
|
|
|
|
|
|
| 546 |
|
| 547 |
Remain concise and relevant to the context. Any off-topic query will not be processed.
|
| 548 |
"""
|
|
|
|
| 553 |
|
| 554 |
with gr.Column(scale=5):
|
| 555 |
default_query_box = gr.Dropdown(
|
| 556 |
+
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
|
| 557 |
)
|
| 558 |
|
| 559 |
gr.Markdown("Or")
|
| 560 |
|
| 561 |
query_box = gr.Textbox(
|
| 562 |
+
value="What is Alice international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True
|
| 563 |
)
|
| 564 |
|
| 565 |
default_query_box.change(
|
|
|
|
| 570 |
|
| 571 |
with gr.Column(scale=1, min_width=6):
|
| 572 |
gr.HTML("<div style='height: 77px;'></div>")
|
| 573 |
+
encrypt_btn = gr.Button("Encrypt the prompt")
|
| 574 |
# gr.HTML("<div style='height: 50px;'></div>")
|
| 575 |
|
| 576 |
with gr.Column(scale=5):
|
|
|
|
| 582 |
########################## FHE processing Part ##########################
|
| 583 |
|
| 584 |
gr.Markdown("<hr />")
|
| 585 |
+
gr.Markdown("## Step 3: Anonymize the document and the prompt using FHE")
|
| 586 |
gr.Markdown(
|
| 587 |
+
"""Once the client encrypts the document and the prompt locally, it will be sent to a remote
|
| 588 |
+
server to perform the anonymization on encrypted data. When the computation is done, the
|
| 589 |
+
server will return the result to the client for decryption.
|
| 590 |
"""
|
| 591 |
)
|
| 592 |
|
| 593 |
+
run_fhe_btn = gr.Button("Anonymize using FHE")
|
| 594 |
|
| 595 |
anonymized_text_output = gr.Textbox(
|
| 596 |
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
|