|
import argparse |
|
import json |
|
import os |
|
import re |
|
import time |
|
import traceback |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
|
import safetensors.torch |
|
import torch |
|
|
|
from tensorrt_llm import str_dtype_to_torch |
|
from tensorrt_llm.mapping import Mapping |
|
from tensorrt_llm.models.convert_utils import split, split_matrix_tp |
|
|
|
|
|
def split_q_tp(v, n_head, n_hidden, tensor_parallel, rank): |
|
split_v = split(v, tensor_parallel, rank, dim=1) |
|
return split_v.contiguous() |
|
|
|
|
|
def split_q_bias_tp(v, n_head, n_hidden, tensor_parallel, rank): |
|
split_v = split(v, tensor_parallel, rank, dim=0) |
|
return split_v.contiguous() |
|
|
|
|
|
FACEBOOK_DIT_NAME_MAPPING = { |
|
"^time_embed.time_mlp.0.weight$": "time_embed.mlp1.weight", |
|
"^time_embed.time_mlp.0.bias$": "time_embed.mlp1.bias", |
|
"^time_embed.time_mlp.2.weight$": "time_embed.mlp2.weight", |
|
"^time_embed.time_mlp.2.bias$": "time_embed.mlp2.bias", |
|
"^input_embed.conv_pos_embed.conv1d.0.weight$": "input_embed.conv_pos_embed.conv1d1.weight", |
|
"^input_embed.conv_pos_embed.conv1d.0.bias$": "input_embed.conv_pos_embed.conv1d1.bias", |
|
"^input_embed.conv_pos_embed.conv1d.2.weight$": "input_embed.conv_pos_embed.conv1d2.weight", |
|
"^input_embed.conv_pos_embed.conv1d.2.bias$": "input_embed.conv_pos_embed.conv1d2.bias", |
|
"^transformer_blocks.0.attn.to_out.0.weight$": "transformer_blocks.0.attn.to_out.weight", |
|
"^transformer_blocks.0.attn.to_out.0.bias$": "transformer_blocks.0.attn.to_out.bias", |
|
"^transformer_blocks.1.attn.to_out.0.weight$": "transformer_blocks.1.attn.to_out.weight", |
|
"^transformer_blocks.1.attn.to_out.0.bias$": "transformer_blocks.1.attn.to_out.bias", |
|
"^transformer_blocks.2.attn.to_out.0.weight$": "transformer_blocks.2.attn.to_out.weight", |
|
"^transformer_blocks.2.attn.to_out.0.bias$": "transformer_blocks.2.attn.to_out.bias", |
|
"^transformer_blocks.3.attn.to_out.0.weight$": "transformer_blocks.3.attn.to_out.weight", |
|
"^transformer_blocks.3.attn.to_out.0.bias$": "transformer_blocks.3.attn.to_out.bias", |
|
"^transformer_blocks.4.attn.to_out.0.weight$": "transformer_blocks.4.attn.to_out.weight", |
|
"^transformer_blocks.4.attn.to_out.0.bias$": "transformer_blocks.4.attn.to_out.bias", |
|
"^transformer_blocks.5.attn.to_out.0.weight$": "transformer_blocks.5.attn.to_out.weight", |
|
"^transformer_blocks.5.attn.to_out.0.bias$": "transformer_blocks.5.attn.to_out.bias", |
|
"^transformer_blocks.6.attn.to_out.0.weight$": "transformer_blocks.6.attn.to_out.weight", |
|
"^transformer_blocks.6.attn.to_out.0.bias$": "transformer_blocks.6.attn.to_out.bias", |
|
"^transformer_blocks.7.attn.to_out.0.weight$": "transformer_blocks.7.attn.to_out.weight", |
|
"^transformer_blocks.7.attn.to_out.0.bias$": "transformer_blocks.7.attn.to_out.bias", |
|
"^transformer_blocks.8.attn.to_out.0.weight$": "transformer_blocks.8.attn.to_out.weight", |
|
"^transformer_blocks.8.attn.to_out.0.bias$": "transformer_blocks.8.attn.to_out.bias", |
|
"^transformer_blocks.9.attn.to_out.0.weight$": "transformer_blocks.9.attn.to_out.weight", |
|
"^transformer_blocks.9.attn.to_out.0.bias$": "transformer_blocks.9.attn.to_out.bias", |
|
"^transformer_blocks.10.attn.to_out.0.weight$": "transformer_blocks.10.attn.to_out.weight", |
|
"^transformer_blocks.10.attn.to_out.0.bias$": "transformer_blocks.10.attn.to_out.bias", |
|
"^transformer_blocks.11.attn.to_out.0.weight$": "transformer_blocks.11.attn.to_out.weight", |
|
"^transformer_blocks.11.attn.to_out.0.bias$": "transformer_blocks.11.attn.to_out.bias", |
|
"^transformer_blocks.12.attn.to_out.0.weight$": "transformer_blocks.12.attn.to_out.weight", |
|
"^transformer_blocks.12.attn.to_out.0.bias$": "transformer_blocks.12.attn.to_out.bias", |
|
"^transformer_blocks.13.attn.to_out.0.weight$": "transformer_blocks.13.attn.to_out.weight", |
|
"^transformer_blocks.13.attn.to_out.0.bias$": "transformer_blocks.13.attn.to_out.bias", |
|
"^transformer_blocks.14.attn.to_out.0.weight$": "transformer_blocks.14.attn.to_out.weight", |
|
"^transformer_blocks.14.attn.to_out.0.bias$": "transformer_blocks.14.attn.to_out.bias", |
|
"^transformer_blocks.15.attn.to_out.0.weight$": "transformer_blocks.15.attn.to_out.weight", |
|
"^transformer_blocks.15.attn.to_out.0.bias$": "transformer_blocks.15.attn.to_out.bias", |
|
"^transformer_blocks.16.attn.to_out.0.weight$": "transformer_blocks.16.attn.to_out.weight", |
|
"^transformer_blocks.16.attn.to_out.0.bias$": "transformer_blocks.16.attn.to_out.bias", |
|
"^transformer_blocks.17.attn.to_out.0.weight$": "transformer_blocks.17.attn.to_out.weight", |
|
"^transformer_blocks.17.attn.to_out.0.bias$": "transformer_blocks.17.attn.to_out.bias", |
|
"^transformer_blocks.18.attn.to_out.0.weight$": "transformer_blocks.18.attn.to_out.weight", |
|
"^transformer_blocks.18.attn.to_out.0.bias$": "transformer_blocks.18.attn.to_out.bias", |
|
"^transformer_blocks.19.attn.to_out.0.weight$": "transformer_blocks.19.attn.to_out.weight", |
|
"^transformer_blocks.19.attn.to_out.0.bias$": "transformer_blocks.19.attn.to_out.bias", |
|
"^transformer_blocks.20.attn.to_out.0.weight$": "transformer_blocks.20.attn.to_out.weight", |
|
"^transformer_blocks.20.attn.to_out.0.bias$": "transformer_blocks.20.attn.to_out.bias", |
|
"^transformer_blocks.21.attn.to_out.0.weight$": "transformer_blocks.21.attn.to_out.weight", |
|
"^transformer_blocks.21.attn.to_out.0.bias$": "transformer_blocks.21.attn.to_out.bias", |
|
"^transformer_blocks.0.ff.ff.0.0.weight$": "transformer_blocks.0.ff.project_in.weight", |
|
"^transformer_blocks.0.ff.ff.0.0.bias$": "transformer_blocks.0.ff.project_in.bias", |
|
"^transformer_blocks.0.ff.ff.2.weight$": "transformer_blocks.0.ff.ff.weight", |
|
"^transformer_blocks.0.ff.ff.2.bias$": "transformer_blocks.0.ff.ff.bias", |
|
"^transformer_blocks.1.ff.ff.0.0.weight$": "transformer_blocks.1.ff.project_in.weight", |
|
"^transformer_blocks.1.ff.ff.0.0.bias$": "transformer_blocks.1.ff.project_in.bias", |
|
"^transformer_blocks.1.ff.ff.2.weight$": "transformer_blocks.1.ff.ff.weight", |
|
"^transformer_blocks.1.ff.ff.2.bias$": "transformer_blocks.1.ff.ff.bias", |
|
"^transformer_blocks.2.ff.ff.0.0.weight$": "transformer_blocks.2.ff.project_in.weight", |
|
"^transformer_blocks.2.ff.ff.0.0.bias$": "transformer_blocks.2.ff.project_in.bias", |
|
"^transformer_blocks.2.ff.ff.2.weight$": "transformer_blocks.2.ff.ff.weight", |
|
"^transformer_blocks.2.ff.ff.2.bias$": "transformer_blocks.2.ff.ff.bias", |
|
"^transformer_blocks.3.ff.ff.0.0.weight$": "transformer_blocks.3.ff.project_in.weight", |
|
"^transformer_blocks.3.ff.ff.0.0.bias$": "transformer_blocks.3.ff.project_in.bias", |
|
"^transformer_blocks.3.ff.ff.2.weight$": "transformer_blocks.3.ff.ff.weight", |
|
"^transformer_blocks.3.ff.ff.2.bias$": "transformer_blocks.3.ff.ff.bias", |
|
"^transformer_blocks.4.ff.ff.0.0.weight$": "transformer_blocks.4.ff.project_in.weight", |
|
"^transformer_blocks.4.ff.ff.0.0.bias$": "transformer_blocks.4.ff.project_in.bias", |
|
"^transformer_blocks.4.ff.ff.2.weight$": "transformer_blocks.4.ff.ff.weight", |
|
"^transformer_blocks.4.ff.ff.2.bias$": "transformer_blocks.4.ff.ff.bias", |
|
"^transformer_blocks.5.ff.ff.0.0.weight$": "transformer_blocks.5.ff.project_in.weight", |
|
"^transformer_blocks.5.ff.ff.0.0.bias$": "transformer_blocks.5.ff.project_in.bias", |
|
"^transformer_blocks.5.ff.ff.2.weight$": "transformer_blocks.5.ff.ff.weight", |
|
"^transformer_blocks.5.ff.ff.2.bias$": "transformer_blocks.5.ff.ff.bias", |
|
"^transformer_blocks.6.ff.ff.0.0.weight$": "transformer_blocks.6.ff.project_in.weight", |
|
"^transformer_blocks.6.ff.ff.0.0.bias$": "transformer_blocks.6.ff.project_in.bias", |
|
"^transformer_blocks.6.ff.ff.2.weight$": "transformer_blocks.6.ff.ff.weight", |
|
"^transformer_blocks.6.ff.ff.2.bias$": "transformer_blocks.6.ff.ff.bias", |
|
"^transformer_blocks.7.ff.ff.0.0.weight$": "transformer_blocks.7.ff.project_in.weight", |
|
"^transformer_blocks.7.ff.ff.0.0.bias$": "transformer_blocks.7.ff.project_in.bias", |
|
"^transformer_blocks.7.ff.ff.2.weight$": "transformer_blocks.7.ff.ff.weight", |
|
"^transformer_blocks.7.ff.ff.2.bias$": "transformer_blocks.7.ff.ff.bias", |
|
"^transformer_blocks.8.ff.ff.0.0.weight$": "transformer_blocks.8.ff.project_in.weight", |
|
"^transformer_blocks.8.ff.ff.0.0.bias$": "transformer_blocks.8.ff.project_in.bias", |
|
"^transformer_blocks.8.ff.ff.2.weight$": "transformer_blocks.8.ff.ff.weight", |
|
"^transformer_blocks.8.ff.ff.2.bias$": "transformer_blocks.8.ff.ff.bias", |
|
"^transformer_blocks.9.ff.ff.0.0.weight$": "transformer_blocks.9.ff.project_in.weight", |
|
"^transformer_blocks.9.ff.ff.0.0.bias$": "transformer_blocks.9.ff.project_in.bias", |
|
"^transformer_blocks.9.ff.ff.2.weight$": "transformer_blocks.9.ff.ff.weight", |
|
"^transformer_blocks.9.ff.ff.2.bias$": "transformer_blocks.9.ff.ff.bias", |
|
"^transformer_blocks.10.ff.ff.0.0.weight$": "transformer_blocks.10.ff.project_in.weight", |
|
"^transformer_blocks.10.ff.ff.0.0.bias$": "transformer_blocks.10.ff.project_in.bias", |
|
"^transformer_blocks.10.ff.ff.2.weight$": "transformer_blocks.10.ff.ff.weight", |
|
"^transformer_blocks.10.ff.ff.2.bias$": "transformer_blocks.10.ff.ff.bias", |
|
"^transformer_blocks.11.ff.ff.0.0.weight$": "transformer_blocks.11.ff.project_in.weight", |
|
"^transformer_blocks.11.ff.ff.0.0.bias$": "transformer_blocks.11.ff.project_in.bias", |
|
"^transformer_blocks.11.ff.ff.2.weight$": "transformer_blocks.11.ff.ff.weight", |
|
"^transformer_blocks.11.ff.ff.2.bias$": "transformer_blocks.11.ff.ff.bias", |
|
"^transformer_blocks.12.ff.ff.0.0.weight$": "transformer_blocks.12.ff.project_in.weight", |
|
"^transformer_blocks.12.ff.ff.0.0.bias$": "transformer_blocks.12.ff.project_in.bias", |
|
"^transformer_blocks.12.ff.ff.2.weight$": "transformer_blocks.12.ff.ff.weight", |
|
"^transformer_blocks.12.ff.ff.2.bias$": "transformer_blocks.12.ff.ff.bias", |
|
"^transformer_blocks.13.ff.ff.0.0.weight$": "transformer_blocks.13.ff.project_in.weight", |
|
"^transformer_blocks.13.ff.ff.0.0.bias$": "transformer_blocks.13.ff.project_in.bias", |
|
"^transformer_blocks.13.ff.ff.2.weight$": "transformer_blocks.13.ff.ff.weight", |
|
"^transformer_blocks.13.ff.ff.2.bias$": "transformer_blocks.13.ff.ff.bias", |
|
"^transformer_blocks.14.ff.ff.0.0.weight$": "transformer_blocks.14.ff.project_in.weight", |
|
"^transformer_blocks.14.ff.ff.0.0.bias$": "transformer_blocks.14.ff.project_in.bias", |
|
"^transformer_blocks.14.ff.ff.2.weight$": "transformer_blocks.14.ff.ff.weight", |
|
"^transformer_blocks.14.ff.ff.2.bias$": "transformer_blocks.14.ff.ff.bias", |
|
"^transformer_blocks.15.ff.ff.0.0.weight$": "transformer_blocks.15.ff.project_in.weight", |
|
"^transformer_blocks.15.ff.ff.0.0.bias$": "transformer_blocks.15.ff.project_in.bias", |
|
"^transformer_blocks.15.ff.ff.2.weight$": "transformer_blocks.15.ff.ff.weight", |
|
"^transformer_blocks.15.ff.ff.2.bias$": "transformer_blocks.15.ff.ff.bias", |
|
"^transformer_blocks.16.ff.ff.0.0.weight$": "transformer_blocks.16.ff.project_in.weight", |
|
"^transformer_blocks.16.ff.ff.0.0.bias$": "transformer_blocks.16.ff.project_in.bias", |
|
"^transformer_blocks.16.ff.ff.2.weight$": "transformer_blocks.16.ff.ff.weight", |
|
"^transformer_blocks.16.ff.ff.2.bias$": "transformer_blocks.16.ff.ff.bias", |
|
"^transformer_blocks.17.ff.ff.0.0.weight$": "transformer_blocks.17.ff.project_in.weight", |
|
"^transformer_blocks.17.ff.ff.0.0.bias$": "transformer_blocks.17.ff.project_in.bias", |
|
"^transformer_blocks.17.ff.ff.2.weight$": "transformer_blocks.17.ff.ff.weight", |
|
"^transformer_blocks.17.ff.ff.2.bias$": "transformer_blocks.17.ff.ff.bias", |
|
"^transformer_blocks.18.ff.ff.0.0.weight$": "transformer_blocks.18.ff.project_in.weight", |
|
"^transformer_blocks.18.ff.ff.0.0.bias$": "transformer_blocks.18.ff.project_in.bias", |
|
"^transformer_blocks.18.ff.ff.2.weight$": "transformer_blocks.18.ff.ff.weight", |
|
"^transformer_blocks.18.ff.ff.2.bias$": "transformer_blocks.18.ff.ff.bias", |
|
"^transformer_blocks.19.ff.ff.0.0.weight$": "transformer_blocks.19.ff.project_in.weight", |
|
"^transformer_blocks.19.ff.ff.0.0.bias$": "transformer_blocks.19.ff.project_in.bias", |
|
"^transformer_blocks.19.ff.ff.2.weight$": "transformer_blocks.19.ff.ff.weight", |
|
"^transformer_blocks.19.ff.ff.2.bias$": "transformer_blocks.19.ff.ff.bias", |
|
"^transformer_blocks.20.ff.ff.0.0.weight$": "transformer_blocks.20.ff.project_in.weight", |
|
"^transformer_blocks.20.ff.ff.0.0.bias$": "transformer_blocks.20.ff.project_in.bias", |
|
"^transformer_blocks.20.ff.ff.2.weight$": "transformer_blocks.20.ff.ff.weight", |
|
"^transformer_blocks.20.ff.ff.2.bias$": "transformer_blocks.20.ff.ff.bias", |
|
"^transformer_blocks.21.ff.ff.0.0.weight$": "transformer_blocks.21.ff.project_in.weight", |
|
"^transformer_blocks.21.ff.ff.0.0.bias$": "transformer_blocks.21.ff.project_in.bias", |
|
"^transformer_blocks.21.ff.ff.2.weight$": "transformer_blocks.21.ff.ff.weight", |
|
"^transformer_blocks.21.ff.ff.2.bias$": "transformer_blocks.21.ff.ff.bias", |
|
} |
|
|
|
|
|
def parse_arguments(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--model_name", |
|
type=str, |
|
default="F5TTS_Base", |
|
choices=[ |
|
"F5TTS_Base", |
|
], |
|
) |
|
parser.add_argument("--timm_ckpt", type=str, default="./ckpts/model_1200000.pt") |
|
parser.add_argument( |
|
"--output_dir", type=str, default="./tllm_checkpoint", help="The path to save the TensorRT-LLM checkpoint" |
|
) |
|
parser.add_argument("--hidden_size", type=int, default=1024, help="The hidden size of DiT") |
|
parser.add_argument("--depth", type=int, default=22, help="The number of DiTBlock layers") |
|
parser.add_argument("--num_heads", type=int, default=16, help="The number of heads of attention module") |
|
parser.add_argument("--cfg_scale", type=float, default=4.0) |
|
parser.add_argument("--tp_size", type=int, default=1, help="N-way tensor parallelism size") |
|
parser.add_argument("--cp_size", type=int, default=1, help="Context parallelism size") |
|
parser.add_argument("--pp_size", type=int, default=1, help="N-way pipeline parallelism size") |
|
parser.add_argument("--dtype", type=str, default="float16", choices=["float32", "bfloat16", "float16"]) |
|
parser.add_argument("--fp8_linear", action="store_true", help="Whether use FP8 for linear layers") |
|
parser.add_argument( |
|
"--workers", type=int, default=1, help="The number of workers for converting checkpoint in parallel" |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def convert_timm_dit(args, mapping, dtype="float32"): |
|
weights = {} |
|
tik = time.time() |
|
torch_dtype = str_dtype_to_torch(dtype) |
|
tensor_parallel = mapping.tp_size |
|
|
|
model_params = dict(torch.load(args.timm_ckpt)) |
|
model_params = { |
|
k: v for k, v in model_params["ema_model_state_dict"].items() if k.startswith("ema_model.transformer") |
|
} |
|
prefix = "ema_model.transformer." |
|
model_params = {key[len(prefix) :] if key.startswith(prefix) else key: value for key, value in model_params.items()} |
|
|
|
timm_to_trtllm_name = FACEBOOK_DIT_NAME_MAPPING |
|
|
|
def get_trtllm_name(timm_name): |
|
for k, v in timm_to_trtllm_name.items(): |
|
m = re.match(k, timm_name) |
|
if m is not None: |
|
if "*" in v: |
|
v = v.replace("*", m.groups()[0]) |
|
return v |
|
return timm_name |
|
|
|
weights = dict() |
|
for name, param in model_params.items(): |
|
if name == "input_embed.conv_pos_embed.conv1d.0.weight" or name == "input_embed.conv_pos_embed.conv1d.2.weight": |
|
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype).unsqueeze(-1) |
|
else: |
|
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype) |
|
|
|
assert len(weights) == len(model_params) |
|
|
|
|
|
new_prefix = "" |
|
weights = {new_prefix + key: value for key, value in weights.items()} |
|
import math |
|
|
|
scale_factor = math.pow(64, -0.25) |
|
for k, v in weights.items(): |
|
if re.match("^transformer_blocks.*.attn.to_k.weight$", k): |
|
weights[k] *= scale_factor |
|
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_k.bias$", k): |
|
weights[k] *= scale_factor |
|
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_q.weight$", k): |
|
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
weights[k] *= scale_factor |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_q.bias$", k): |
|
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
weights[k] *= scale_factor |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_v.weight$", k): |
|
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_v.bias$", k): |
|
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank) |
|
|
|
elif re.match("^transformer_blocks.*.attn.to_out.weight$", k): |
|
weights[k] = split_matrix_tp(v, tensor_parallel, mapping.tp_rank, dim=1) |
|
|
|
tok = time.time() |
|
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik)) |
|
print(f"Weights loaded. Total time: {t}") |
|
return weights |
|
|
|
|
|
def save_config(args): |
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
config = { |
|
"architecture": "F5TTS", |
|
"dtype": args.dtype, |
|
"hidden_size": 1024, |
|
"num_hidden_layers": 22, |
|
"num_attention_heads": 16, |
|
"dim_head": 64, |
|
"dropout": 0.1, |
|
"ff_mult": 2, |
|
"mel_dim": 100, |
|
"text_num_embeds": 256, |
|
"text_dim": 512, |
|
"conv_layers": 4, |
|
"long_skip_connection": False, |
|
"mapping": { |
|
"world_size": args.cp_size * args.tp_size * args.pp_size, |
|
"cp_size": args.cp_size, |
|
"tp_size": args.tp_size, |
|
"pp_size": args.pp_size, |
|
}, |
|
} |
|
if args.fp8_linear: |
|
config["quantization"] = { |
|
"quant_algo": "FP8", |
|
|
|
|
|
} |
|
|
|
with open(os.path.join(args.output_dir, "config.json"), "w") as f: |
|
json.dump(config, f, indent=4) |
|
|
|
|
|
def covert_and_save(args, rank): |
|
if rank == 0: |
|
save_config(args) |
|
|
|
mapping = Mapping( |
|
world_size=args.cp_size * args.tp_size * args.pp_size, |
|
rank=rank, |
|
cp_size=args.cp_size, |
|
tp_size=args.tp_size, |
|
pp_size=args.pp_size, |
|
) |
|
|
|
weights = convert_timm_dit(args, mapping, dtype=args.dtype) |
|
|
|
safetensors.torch.save_file(weights, os.path.join(args.output_dir, f"rank{rank}.safetensors")) |
|
|
|
|
|
def execute(workers, func, args): |
|
if workers == 1: |
|
for rank, f in enumerate(func): |
|
f(args, rank) |
|
else: |
|
with ThreadPoolExecutor(max_workers=workers) as p: |
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)] |
|
exceptions = [] |
|
for future in as_completed(futures): |
|
try: |
|
future.result() |
|
except Exception as e: |
|
traceback.print_exc() |
|
exceptions.append(e) |
|
assert len(exceptions) == 0, "Checkpoint conversion failed, please check error log." |
|
|
|
|
|
def main(): |
|
args = parse_arguments() |
|
world_size = args.cp_size * args.tp_size * args.pp_size |
|
|
|
assert args.pp_size == 1, "PP is not supported yet." |
|
|
|
tik = time.time() |
|
if args.timm_ckpt is None: |
|
return |
|
print("start execute") |
|
execute(args.workers, [covert_and_save] * world_size, args) |
|
|
|
tok = time.time() |
|
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik)) |
|
print(f"Total time of converting checkpoints: {t}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|