|
|
|
|
|
|
|
import os |
|
import json |
|
from concurrent.futures import ProcessPoolExecutor |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
from datasets.arrow_writer import ArrowWriter |
|
from importlib.resources import files |
|
|
|
from f5_tts.model.utils import ( |
|
repetition_found, |
|
) |
|
|
|
|
|
out_en = set() |
|
en_filters = ["Ψ§", "γ", "γ¦"] |
|
|
|
|
|
def process_audio_directory(audio_dir): |
|
sub_result, durations, vocab_set = [], [], set() |
|
bad_case_en = 0 |
|
|
|
for file in audio_dir.iterdir(): |
|
if file.suffix == ".json": |
|
with open(file, "r") as f: |
|
obj = json.load(f) |
|
text = obj["text"] |
|
if any(f in text for f in en_filters) or repetition_found(text, length=4): |
|
bad_case_en += 1 |
|
continue |
|
|
|
duration = obj["duration"] |
|
audio_file = file.with_suffix(".mp3") |
|
if audio_file.exists(): |
|
sub_result.append({"audio_path": str(audio_file), "text": text, "duration": duration}) |
|
durations.append(duration) |
|
vocab_set.update(list(text)) |
|
|
|
return sub_result, durations, vocab_set, bad_case_en |
|
|
|
|
|
def main(): |
|
assert tokenizer in ["pinyin", "char"] |
|
result, duration_list, text_vocab_set = [], [], set() |
|
total_bad_case_en = 0 |
|
|
|
executor = ProcessPoolExecutor(max_workers=max_workers) |
|
futures = [] |
|
dataset_path = Path(dataset_dir) |
|
for sub_dir in dataset_path.iterdir(): |
|
if sub_dir.is_dir(): |
|
futures.append(executor.submit(process_audio_directory, sub_dir)) |
|
|
|
for future in tqdm(futures, total=len(futures)): |
|
sub_result, durations, vocab_set, bad_case_en = future.result() |
|
result.extend(sub_result) |
|
duration_list.extend(durations) |
|
text_vocab_set.update(vocab_set) |
|
total_bad_case_en += bad_case_en |
|
|
|
executor.shutdown() |
|
|
|
if not os.path.exists(f"{save_dir}"): |
|
os.makedirs(f"{save_dir}") |
|
|
|
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: |
|
for line in tqdm(result, desc="Writing to raw.arrow ..."): |
|
writer.write(line) |
|
|
|
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: |
|
json.dump({"duration": duration_list}, f, ensure_ascii=False) |
|
|
|
with open(f"{save_dir}/vocab.txt", "w") as f: |
|
for vocab in sorted(text_vocab_set): |
|
f.write(vocab + "\n") |
|
|
|
print(f"For {dataset_name}, sample count: {len(result)}") |
|
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") |
|
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours") |
|
print(f"Bad en transcription case: {total_bad_case_en}\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
max_workers = 32 |
|
tokenizer = "char" |
|
dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN" |
|
dataset_name = f"Emilia_EN_{tokenizer}" |
|
|
|
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" |
|
|
|
print(f"Prepare for {dataset_name}, will save to {save_dir}\n") |
|
main() |
|
|