HORT / hort /models /tgs /data.py
zerchen's picture
init test without models
717b269
raw
history blame
10.5 kB
import json
import math
from dataclasses import dataclass, field
import os
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch.utils.data import Dataset
from tgs.utils.config import parse_structured
from tgs.utils.ops import get_intrinsic_from_fov, get_ray_directions, get_rays
from tgs.utils.typing import *
def _parse_scene_list_single(scene_list_path: str):
if scene_list_path.endswith(".json"):
with open(scene_list_path) as f:
all_scenes = json.loads(f.read())
elif scene_list_path.endswith(".txt"):
with open(scene_list_path) as f:
all_scenes = [p.strip() for p in f.readlines()]
else:
all_scenes = [scene_list_path]
return all_scenes
def _parse_scene_list(scene_list_path: Union[str, List[str]]):
all_scenes = []
if isinstance(scene_list_path, str):
scene_list_path = [scene_list_path]
for scene_list_path_ in scene_list_path:
all_scenes += _parse_scene_list_single(scene_list_path_)
return all_scenes
@dataclass
class CustomImageDataModuleConfig:
image_list: Any = ""
background_color: Tuple[float, float, float] = field(
default_factory=lambda: (1.0, 1.0, 1.0)
)
relative_pose: bool = False
cond_height: int = 512
cond_width: int = 512
cond_camera_distance: float = 1.6
cond_fovy_deg: float = 40.0
cond_elevation_deg: float = 0.0
cond_azimuth_deg: float = 0.0
num_workers: int = 16
eval_height: int = 512
eval_width: int = 512
eval_batch_size: int = 1
eval_elevation_deg: float = 0.0
eval_camera_distance: float = 1.6
eval_fovy_deg: float = 40.0
n_test_views: int = 120
num_views_output: int = 120
only_3dgs: bool = False
class CustomImageOrbitDataset(Dataset):
def __init__(self, cfg: Any) -> None:
super().__init__()
self.cfg: CustomImageDataModuleConfig = parse_structured(CustomImageDataModuleConfig, cfg)
self.n_views = self.cfg.n_test_views
assert self.n_views % self.cfg.num_views_output == 0
self.all_scenes = _parse_scene_list(self.cfg.image_list)
azimuth_deg: Float[Tensor, "B"] = torch.linspace(0, 360.0, self.n_views + 1)[
: self.n_views
]
elevation_deg: Float[Tensor, "B"] = torch.full_like(
azimuth_deg, self.cfg.eval_elevation_deg
)
camera_distances: Float[Tensor, "B"] = torch.full_like(
elevation_deg, self.cfg.eval_camera_distance
)
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
# convert spherical coordinates to cartesian coordinates
# right hand coordinate system, x back, y right, z up
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
camera_positions: Float[Tensor, "B 3"] = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
# default scene center at origin
center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions)
# default camera up direction as +z
up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[
None, :
].repeat(self.n_views, 1)
fovy_deg: Float[Tensor, "B"] = torch.full_like(
elevation_deg, self.cfg.eval_fovy_deg
)
fovy = fovy_deg * math.pi / 180
lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1)
right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
c2w3x4: Float[Tensor, "B 3 4"] = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w: Float[Tensor, "B 4 4"] = torch.cat(
[c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1
)
c2w[:, 3, 3] = 1.0
# get directions by dividing directions_unit_focal by focal length
focal_length: Float[Tensor, "B"] = (
0.5 * self.cfg.eval_height / torch.tan(0.5 * fovy)
)
directions_unit_focal = get_ray_directions(
H=self.cfg.eval_height,
W=self.cfg.eval_width,
focal=1.0,
)
directions: Float[Tensor, "B H W 3"] = directions_unit_focal[
None, :, :, :
].repeat(self.n_views, 1, 1, 1)
directions[:, :, :, :2] = (
directions[:, :, :, :2] / focal_length[:, None, None, None]
)
# must use normalize=True to normalize directions here
rays_o, rays_d = get_rays(directions, c2w, keepdim=True)
intrinsic: Float[Tensor, "B 3 3"] = get_intrinsic_from_fov(
self.cfg.eval_fovy_deg * math.pi / 180,
H=self.cfg.eval_height,
W=self.cfg.eval_width,
bs=self.n_views,
)
intrinsic_normed: Float[Tensor, "B 3 3"] = intrinsic.clone()
intrinsic_normed[..., 0, 2] /= self.cfg.eval_width
intrinsic_normed[..., 1, 2] /= self.cfg.eval_height
intrinsic_normed[..., 0, 0] /= self.cfg.eval_width
intrinsic_normed[..., 1, 1] /= self.cfg.eval_height
self.rays_o, self.rays_d = rays_o, rays_d
self.intrinsic = intrinsic
self.intrinsic_normed = intrinsic_normed
self.c2w = c2w
self.camera_positions = camera_positions
self.background_color = torch.as_tensor(self.cfg.background_color)
# condition
self.intrinsic_cond = get_intrinsic_from_fov(
np.deg2rad(self.cfg.cond_fovy_deg),
H=self.cfg.cond_height,
W=self.cfg.cond_width,
)
self.intrinsic_normed_cond = self.intrinsic_cond.clone()
self.intrinsic_normed_cond[..., 0, 2] /= self.cfg.cond_width
self.intrinsic_normed_cond[..., 1, 2] /= self.cfg.cond_height
self.intrinsic_normed_cond[..., 0, 0] /= self.cfg.cond_width
self.intrinsic_normed_cond[..., 1, 1] /= self.cfg.cond_height
if self.cfg.relative_pose:
self.c2w_cond = torch.as_tensor(
[
[0, 0, 1, self.cfg.cond_camera_distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
]
).float()
else:
cond_elevation = self.cfg.cond_elevation_deg * math.pi / 180
cond_azimuth = self.cfg.cond_azimuth_deg * math.pi / 180
cond_camera_position: Float[Tensor, "3"] = torch.as_tensor(
[
self.cfg.cond_camera_distance * np.cos(cond_elevation) * np.cos(cond_azimuth),
self.cfg.cond_camera_distance * np.cos(cond_elevation) * np.sin(cond_azimuth),
self.cfg.cond_camera_distance * np.sin(cond_elevation),
], dtype=torch.float32
)
cond_center: Float[Tensor, "3"] = torch.zeros_like(cond_camera_position)
cond_up: Float[Tensor, "3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)
cond_lookat: Float[Tensor, "3"] = F.normalize(cond_center - cond_camera_position, dim=-1)
cond_right: Float[Tensor, "3"] = F.normalize(torch.cross(cond_lookat, cond_up), dim=-1)
cond_up = F.normalize(torch.cross(cond_right, cond_lookat), dim=-1)
cond_c2w3x4: Float[Tensor, "3 4"] = torch.cat(
[torch.stack([cond_right, cond_up, -cond_lookat], dim=-1), cond_camera_position[:, None]],
dim=-1,
)
cond_c2w: Float[Tensor, "4 4"] = torch.cat(
[cond_c2w3x4, torch.zeros_like(cond_c2w3x4[:1])], dim=0
)
cond_c2w[3, 3] = 1.0
self.c2w_cond = cond_c2w
def __len__(self):
if self.cfg.only_3dgs:
return len(self.all_scenes)
else:
return len(self.all_scenes) * self.n_views // self.cfg.num_views_output
def __getitem__(self, index):
if self.cfg.only_3dgs:
scene_index = index
view_index = [0]
else:
scene_index = index * self.cfg.num_views_output // self.n_views
view_start = index % (self.n_views // self.cfg.num_views_output)
view_index = list(range(self.n_views))[view_start * self.cfg.num_views_output :
(view_start + 1) * self.cfg.num_views_output]
img_path = self.all_scenes[scene_index]
img_cond = torch.from_numpy(
np.asarray(
Image.fromarray(imageio.v2.imread(img_path))
.convert("RGBA")
.resize((self.cfg.cond_width, self.cfg.cond_height))
)
/ 255.0
).float()
mask_cond: Float[Tensor, "Hc Wc 1"] = img_cond[:, :, -1:]
rgb_cond: Float[Tensor, "Hc Wc 3"] = img_cond[
:, :, :3
] * mask_cond + self.background_color[None, None, :] * (1 - mask_cond)
out = {
"rgb_cond": rgb_cond.unsqueeze(0),
"c2w_cond": self.c2w_cond.unsqueeze(0),
"mask_cond": mask_cond.unsqueeze(0),
"intrinsic_cond": self.intrinsic_cond.unsqueeze(0),
"intrinsic_normed_cond": self.intrinsic_normed_cond.unsqueeze(0),
"view_index": torch.as_tensor(view_index),
"rays_o": self.rays_o[view_index],
"rays_d": self.rays_d[view_index],
"intrinsic": self.intrinsic[view_index],
"intrinsic_normed": self.intrinsic_normed[view_index],
"c2w": self.c2w[view_index],
"camera_positions": self.camera_positions[view_index],
}
out["c2w"][..., :3, 1:3] *= -1
out["c2w_cond"][..., :3, 1:3] *= -1
instance_id = os.path.split(img_path)[-1].split('.')[0]
out["index"] = torch.as_tensor(scene_index)
out["background_color"] = self.background_color
out["instance_id"] = instance_id
return out
def collate(self, batch):
batch = torch.utils.data.default_collate(batch)
batch.update({"height": self.cfg.eval_height, "width": self.cfg.eval_width})
return batch