""" Paired with a good language model. Thanks! """ import torch from typing import Optional, Tuple from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen try: from kernels import get_kernel _k = get_kernel("kernels-community/vllm-flash-attn3") _flash_attn_func = _k.flash_attn_func except Exception as e: _flash_attn_func = None _kernels_err = e def _ensure_fa3_available(): if _flash_attn_func is None: raise ImportError( "FlashAttention-3 via Hugging Face `kernels` is required. " "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n" f"{_kernels_err}" ) @torch.library.custom_op("flash::flash_attn_func", mutates_args=()) def flash_attn_func( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False ) -> torch.Tensor: outputs, lse = _flash_attn_func(q, k, v, causal=causal) return outputs @flash_attn_func.register_fake def _(q, k, v, **kwargs): # two outputs: # 1. output: (batch, seq_len, num_heads, head_dim) # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32 meta_q = torch.empty_like(q).contiguous() return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32) class QwenDoubleStreamAttnProcessorFA3: """ FA3-based attention processor for Qwen double-stream architecture. Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3 accessed via Hugging Face `kernels`. Notes / limitations: - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask. - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features. - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor). """ _attention_backend = "fa3" # for parity with your other processors, not used internally def __init__(self): _ensure_fa3_available() @torch.no_grad() def __call__( self, attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs) ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: if encoder_hidden_states is None: raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).") if attention_mask is not None: # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues. raise NotImplementedError("attention_mask is not supported in this FA3 implementation.") _ensure_fa3_available() B, S_img, _ = hidden_states.shape S_txt = encoder_hidden_states.shape[1] # ---- QKV projections (image/sample stream) ---- img_q = attn.to_q(hidden_states) # (B, S_img, D) img_k = attn.to_k(hidden_states) img_v = attn.to_v(hidden_states) # ---- QKV projections (text/context stream) ---- txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D) txt_k = attn.add_k_proj(encoder_hidden_states) txt_v = attn.add_v_proj(encoder_hidden_states) # ---- Reshape to (B, S, H, D_h) ---- H = attn.heads img_q = img_q.unflatten(-1, (H, -1)) img_k = img_k.unflatten(-1, (H, -1)) img_v = img_v.unflatten(-1, (H, -1)) txt_q = txt_q.unflatten(-1, (H, -1)) txt_k = txt_k.unflatten(-1, (H, -1)) txt_v = txt_v.unflatten(-1, (H, -1)) # ---- Q/K normalization (per your module contract) ---- if getattr(attn, "norm_q", None) is not None: img_q = attn.norm_q(img_q) if getattr(attn, "norm_k", None) is not None: img_k = attn.norm_k(img_k) if getattr(attn, "norm_added_q", None) is not None: txt_q = attn.norm_added_q(txt_q) if getattr(attn, "norm_added_k", None) is not None: txt_k = attn.norm_added_k(txt_k) # ---- RoPE (Qwen variant) ---- if image_rotary_emb is not None: img_freqs, txt_freqs = image_rotary_emb # expects tensors shaped (B, S, H, D_h) img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False) img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False) txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False) txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False) # ---- Joint attention over [text, image] along sequence axis ---- # Shapes: (B, S_total, H, D_h) q = torch.cat([txt_q, img_q], dim=1) k = torch.cat([txt_k, img_k], dim=1) v = torch.cat([txt_v, img_v], dim=1) # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse) out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h) # ---- Back to (B, S, D_model) ---- out = out.flatten(2, 3).to(q.dtype) # Split back to text / image segments txt_attn_out = out[:, :S_txt, :] img_attn_out = out[:, S_txt:, :] # ---- Output projections ---- img_attn_out = attn.to_out[0](img_attn_out) if len(attn.to_out) > 1: img_attn_out = attn.to_out[1](img_attn_out) # dropout if present txt_attn_out = attn.to_add_out(txt_attn_out) return img_attn_out, txt_attn_out