Spaces:
Running
on
Zero
Running
on
Zero
revert my changes
Browse files
app.py
CHANGED
@@ -3,137 +3,14 @@ import numpy as np
|
|
3 |
import random
|
4 |
import torch
|
5 |
import spaces
|
6 |
-
|
7 |
-
import json
|
8 |
-
import torch
|
9 |
from PIL import Image
|
10 |
-
|
11 |
-
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
12 |
-
from huggingface_hub import InferenceClient
|
13 |
import math
|
14 |
|
15 |
from optimization import optimize_pipeline_
|
16 |
-
|
17 |
-
|
18 |
-
def polish_prompt_hf(original_prompt, system_prompt):
|
19 |
-
"""
|
20 |
-
Rewrites the prompt using a Hugging Face InferenceClient.
|
21 |
-
"""
|
22 |
-
# Ensure HF_TOKEN is set
|
23 |
-
api_key = os.environ.get("HF_TOKEN")
|
24 |
-
if not api_key:
|
25 |
-
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
26 |
-
return original_prompt
|
27 |
-
|
28 |
-
try:
|
29 |
-
# Initialize the client
|
30 |
-
client = InferenceClient(
|
31 |
-
provider="cerebras",
|
32 |
-
api_key=api_key,
|
33 |
-
)
|
34 |
-
|
35 |
-
# Format the messages for the chat completions API
|
36 |
-
messages = [
|
37 |
-
{"role": "system", "content": system_prompt},
|
38 |
-
{"role": "user", "content": original_prompt}
|
39 |
-
]
|
40 |
-
|
41 |
-
# Call the API
|
42 |
-
completion = client.chat.completions.create(
|
43 |
-
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
|
44 |
-
messages=messages,
|
45 |
-
)
|
46 |
-
|
47 |
-
# Parse the response
|
48 |
-
result = completion.choices[0].message.content
|
49 |
-
|
50 |
-
# Try to extract JSON if present
|
51 |
-
if '{"Rewritten"' in result:
|
52 |
-
try:
|
53 |
-
# Clean up the response
|
54 |
-
result = result.replace('```json', '').replace('```', '')
|
55 |
-
result_json = json.loads(result)
|
56 |
-
polished_prompt = result_json.get('Rewritten', result)
|
57 |
-
except:
|
58 |
-
polished_prompt = result
|
59 |
-
else:
|
60 |
-
polished_prompt = result
|
61 |
-
|
62 |
-
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
63 |
-
return polished_prompt
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error during API call to Hugging Face: {e}")
|
67 |
-
# Fallback to original prompt if enhancement fails
|
68 |
-
return original_prompt
|
69 |
-
|
70 |
-
|
71 |
-
def polish_prompt(prompt, img):
|
72 |
-
"""
|
73 |
-
Main function to polish prompts for image editing using HF inference.
|
74 |
-
"""
|
75 |
-
SYSTEM_PROMPT = '''
|
76 |
-
# Edit Instruction Rewriter
|
77 |
-
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
78 |
-
|
79 |
-
Please strictly follow the rewriting rules below:
|
80 |
-
|
81 |
-
## 1. General Principles
|
82 |
-
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
|
83 |
-
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
|
84 |
-
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
|
85 |
-
- All added objects or modifications must align with the logic and style of the edited input image's overall scene.
|
86 |
-
|
87 |
-
## 2. Task Type Handling Rules
|
88 |
-
### 1. Add, Delete, Replace Tasks
|
89 |
-
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
|
90 |
-
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
|
91 |
-
> Original: "Add an animal"
|
92 |
-
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
|
93 |
-
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
|
94 |
-
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
|
95 |
-
|
96 |
-
### 2. Text Editing Tasks
|
97 |
-
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
|
98 |
-
- **For text replacement tasks, always use the fixed template:**
|
99 |
-
- Replace "xx" to "yy".
|
100 |
-
- Replace the xx bounding box to "yy".
|
101 |
-
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
|
102 |
-
> Original: "Add a line of text" (poster)
|
103 |
-
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
|
104 |
-
- Specify text position, color, and layout in a concise way.
|
105 |
-
|
106 |
-
### 3. Human Editing Tasks
|
107 |
-
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
|
108 |
-
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
|
109 |
-
- **For expression changes, they must be natural and subtle, never exaggerated.**
|
110 |
-
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
|
111 |
-
- For background change tasks, emphasize maintaining subject consistency at first.
|
112 |
-
- Example:
|
113 |
-
> Original: "Change the person's hat"
|
114 |
-
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
|
115 |
-
|
116 |
-
### 4. Style Transformation or Enhancement Tasks
|
117 |
-
- If a style is specified, describe it concisely with key visual traits. For example:
|
118 |
-
> Original: "Disco style"
|
119 |
-
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
|
120 |
-
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
|
121 |
-
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
|
122 |
-
- If there are other changes, place the style description at the end.
|
123 |
-
|
124 |
-
## 3. Rationality and Logic Checks
|
125 |
-
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
|
126 |
-
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
|
127 |
-
|
128 |
-
# Output Format
|
129 |
-
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
|
130 |
-
'''
|
131 |
-
|
132 |
-
# Note: We're not actually using the image in the HF version,
|
133 |
-
# but keeping the interface consistent
|
134 |
-
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
|
135 |
-
|
136 |
-
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
137 |
|
138 |
|
139 |
# --- Model Loading ---
|
@@ -148,7 +25,7 @@ optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
|
148 |
# --- UI Constants and Helpers ---
|
149 |
MAX_SEED = np.iinfo(np.int32).max
|
150 |
|
151 |
-
# --- Main Inference Function ---
|
152 |
@spaces.GPU(duration=120)
|
153 |
def infer(
|
154 |
image,
|
@@ -156,14 +33,13 @@ def infer(
|
|
156 |
seed=42,
|
157 |
randomize_seed=False,
|
158 |
true_guidance_scale=4.0,
|
159 |
-
num_inference_steps=
|
160 |
-
rewrite_prompt=True,
|
161 |
progress=gr.Progress(track_tqdm=True),
|
162 |
):
|
163 |
"""
|
164 |
-
Generates an
|
165 |
"""
|
166 |
-
# Hardcode the negative prompt as
|
167 |
negative_prompt = " "
|
168 |
|
169 |
if randomize_seed:
|
@@ -172,83 +48,54 @@ def infer(
|
|
172 |
# Set up the generator for reproducibility
|
173 |
generator = torch.Generator(device=device).manual_seed(seed)
|
174 |
|
175 |
-
print(f"
|
176 |
print(f"Negative Prompt: '{negative_prompt}'")
|
177 |
-
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {
|
178 |
-
|
179 |
-
if rewrite_prompt:
|
180 |
-
prompt = polish_prompt(prompt, image)
|
181 |
-
print(f"Rewritten Prompt: {prompt}")
|
182 |
-
|
183 |
-
# Generate the edited image - always generate just 1 image
|
184 |
|
185 |
-
|
|
|
186 |
image,
|
187 |
prompt=prompt,
|
188 |
negative_prompt=negative_prompt,
|
189 |
num_inference_steps=num_inference_steps,
|
190 |
generator=generator,
|
191 |
true_cfg_scale=true_guidance_scale,
|
192 |
-
|
193 |
-
).images
|
194 |
-
|
195 |
-
# Return the first (and only) image
|
196 |
-
return images[0], seed
|
197 |
-
|
198 |
|
|
|
199 |
|
200 |
# --- Examples and UI Layout ---
|
|
|
201 |
|
202 |
css = """
|
203 |
#col-container {
|
204 |
margin: 0 auto;
|
205 |
max-width: 1024px;
|
206 |
}
|
207 |
-
#logo-title {
|
208 |
-
text-align: center;
|
209 |
-
}
|
210 |
-
#logo-title img {
|
211 |
-
width: 400px;
|
212 |
-
}
|
213 |
#edit_text{margin-top: -62px !important}
|
214 |
"""
|
215 |
|
216 |
with gr.Blocks(css=css) as demo:
|
217 |
with gr.Column(elem_id="col-container"):
|
218 |
-
gr.HTML("""
|
219 |
-
<
|
220 |
-
|
221 |
-
</div>
|
222 |
-
""")
|
223 |
-
gr.Markdown("""
|
224 |
-
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
|
225 |
-
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
|
226 |
-
""")
|
227 |
-
|
228 |
with gr.Row():
|
229 |
with gr.Column():
|
230 |
-
input_image = gr.Image(
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
234 |
)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
show_label=True,
|
239 |
-
type="pil"
|
240 |
-
)
|
241 |
-
|
242 |
-
with gr.Row():
|
243 |
-
prompt = gr.Text(
|
244 |
-
label="Edit Instruction",
|
245 |
-
show_label=False,
|
246 |
-
placeholder="Describe the edit instruction (e.g., 'Replace the background with a sunset', 'Add a red hat', 'Remove the person')",
|
247 |
-
container=False,
|
248 |
-
)
|
249 |
-
run_button = gr.Button("Edit!", variant="primary")
|
250 |
|
251 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
252 |
seed = gr.Slider(
|
253 |
label="Seed",
|
254 |
minimum=0,
|
@@ -260,29 +107,24 @@ with gr.Blocks(css=css) as demo:
|
|
260 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
261 |
|
262 |
with gr.Row():
|
|
|
263 |
true_guidance_scale = gr.Slider(
|
264 |
label="True guidance scale",
|
265 |
minimum=1.0,
|
266 |
maximum=10.0,
|
267 |
step=0.1,
|
268 |
-
value=
|
269 |
)
|
270 |
|
271 |
num_inference_steps = gr.Slider(
|
272 |
label="Number of inference steps",
|
273 |
-
minimum=
|
274 |
maximum=50,
|
275 |
step=1,
|
276 |
-
value=
|
277 |
)
|
278 |
-
|
279 |
-
# Removed num_images_per_prompt slider entirely
|
280 |
-
rewrite_prompt = gr.Checkbox(
|
281 |
-
label="Enhance prompt (using HF Inference)",
|
282 |
-
value=True
|
283 |
-
)
|
284 |
|
285 |
-
#gr.Examples(examples=
|
286 |
|
287 |
gr.on(
|
288 |
triggers=[run_button.click, prompt.submit],
|
@@ -290,12 +132,11 @@ with gr.Blocks(css=css) as demo:
|
|
290 |
inputs=[
|
291 |
input_image,
|
292 |
prompt,
|
|
|
293 |
seed,
|
294 |
randomize_seed,
|
295 |
true_guidance_scale,
|
296 |
num_inference_steps,
|
297 |
-
rewrite_prompt,
|
298 |
-
# Removed num_images_per_prompt from inputs
|
299 |
],
|
300 |
outputs=[result, seed],
|
301 |
)
|
|
|
3 |
import random
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
|
|
|
|
|
7 |
from PIL import Image
|
8 |
+
import torch
|
|
|
|
|
9 |
import math
|
10 |
|
11 |
from optimization import optimize_pipeline_
|
12 |
+
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
13 |
+
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
# --- Model Loading ---
|
|
|
25 |
# --- UI Constants and Helpers ---
|
26 |
MAX_SEED = np.iinfo(np.int32).max
|
27 |
|
28 |
+
# --- Main Inference Function (with hardcoded negative prompt) ---
|
29 |
@spaces.GPU(duration=120)
|
30 |
def infer(
|
31 |
image,
|
|
|
33 |
seed=42,
|
34 |
randomize_seed=False,
|
35 |
true_guidance_scale=4.0,
|
36 |
+
num_inference_steps=50,
|
|
|
37 |
progress=gr.Progress(track_tqdm=True),
|
38 |
):
|
39 |
"""
|
40 |
+
Generates an image using the local Qwen-Image diffusers pipeline.
|
41 |
"""
|
42 |
+
# Hardcode the negative prompt as requested
|
43 |
negative_prompt = " "
|
44 |
|
45 |
if randomize_seed:
|
|
|
48 |
# Set up the generator for reproducibility
|
49 |
generator = torch.Generator(device=device).manual_seed(seed)
|
50 |
|
51 |
+
print(f"Calling pipeline with prompt: '{prompt}'")
|
52 |
print(f"Negative Prompt: '{negative_prompt}'")
|
53 |
+
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Generate the image
|
56 |
+
image = pipe(
|
57 |
image,
|
58 |
prompt=prompt,
|
59 |
negative_prompt=negative_prompt,
|
60 |
num_inference_steps=num_inference_steps,
|
61 |
generator=generator,
|
62 |
true_cfg_scale=true_guidance_scale,
|
63 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
return image, seed
|
66 |
|
67 |
# --- Examples and UI Layout ---
|
68 |
+
examples = []
|
69 |
|
70 |
css = """
|
71 |
#col-container {
|
72 |
margin: 0 auto;
|
73 |
max-width: 1024px;
|
74 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
#edit_text{margin-top: -62px !important}
|
76 |
"""
|
77 |
|
78 |
with gr.Blocks(css=css) as demo:
|
79 |
with gr.Column(elem_id="col-container"):
|
80 |
+
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
|
81 |
+
gr.HTML('<h1 style="text-align: center;margin-left: 80px;color: #5b47d1;font-style: italic;">Edit</h1>', elem_id="edit_text")
|
82 |
+
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
with gr.Row():
|
84 |
with gr.Column():
|
85 |
+
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
|
86 |
+
prompt = gr.Text(
|
87 |
+
label="Prompt",
|
88 |
+
show_label=False,
|
89 |
+
placeholder="describe the edit instruction",
|
90 |
+
container=False,
|
91 |
)
|
92 |
+
run_button = gr.Button("Edit!", variant="primary")
|
93 |
+
|
94 |
+
result = gr.Image(label="Result", show_label=False, type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
with gr.Accordion("Advanced Settings", open=False):
|
97 |
+
# Negative prompt UI element is removed here
|
98 |
+
|
99 |
seed = gr.Slider(
|
100 |
label="Seed",
|
101 |
minimum=0,
|
|
|
107 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
108 |
|
109 |
with gr.Row():
|
110 |
+
|
111 |
true_guidance_scale = gr.Slider(
|
112 |
label="True guidance scale",
|
113 |
minimum=1.0,
|
114 |
maximum=10.0,
|
115 |
step=0.1,
|
116 |
+
value=1.0
|
117 |
)
|
118 |
|
119 |
num_inference_steps = gr.Slider(
|
120 |
label="Number of inference steps",
|
121 |
+
minimum=1,
|
122 |
maximum=50,
|
123 |
step=1,
|
124 |
+
value=50,
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
128 |
|
129 |
gr.on(
|
130 |
triggers=[run_button.click, prompt.submit],
|
|
|
132 |
inputs=[
|
133 |
input_image,
|
134 |
prompt,
|
135 |
+
# negative_prompt is no longer an input from the UI
|
136 |
seed,
|
137 |
randomize_seed,
|
138 |
true_guidance_scale,
|
139 |
num_inference_steps,
|
|
|
|
|
140 |
],
|
141 |
outputs=[result, seed],
|
142 |
)
|