Spaces:
Running
on
Zero
Running
on
Zero
Update optimization.py (#1)
Browse files- Update optimization.py (845a6fa9aafae56c55619862cfd754aa7a5b8d5b)
- Update app.py (5ee50f27f37c63d15584263d7dc04039d4fbc74b)
- app.py +10 -4
- optimization.py +1 -1
app.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
@@ -10,8 +14,8 @@ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
|
10 |
import torch
|
11 |
import math
|
12 |
|
|
|
13 |
|
14 |
-
import os
|
15 |
|
16 |
# --- Model Loading ---
|
17 |
dtype = torch.bfloat16
|
@@ -44,9 +48,11 @@ pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=s
|
|
44 |
pipe.load_lora_weights(
|
45 |
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors", adapter_name="lightx2v"
|
46 |
)
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
# --- UI Constants and Helpers ---
|
52 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
1 |
+
# PyTorch 2.8 (temporary hack)
|
2 |
+
import os
|
3 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import random
|
|
|
14 |
import torch
|
15 |
import math
|
16 |
|
17 |
+
from optimization import optimize_pipeline_
|
18 |
|
|
|
19 |
|
20 |
# --- Model Loading ---
|
21 |
dtype = torch.bfloat16
|
|
|
48 |
pipe.load_lora_weights(
|
49 |
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors", adapter_name="lightx2v"
|
50 |
)
|
51 |
+
pipe.set_adapters(["lightx2v"], adapter_weights=[1.])
|
52 |
+
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=1., components=["transformer"])
|
53 |
+
pipe.unload_lora_weights()
|
54 |
+
|
55 |
+
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt='prompt')
|
56 |
|
57 |
# --- UI Constants and Helpers ---
|
58 |
MAX_SEED = np.iinfo(np.int32).max
|
optimization.py
CHANGED
@@ -19,7 +19,7 @@ from optimization_utils import cudagraph
|
|
19 |
P = ParamSpec('P')
|
20 |
|
21 |
|
22 |
-
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=
|
23 |
|
24 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
25 |
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
|
|
|
19 |
P = ParamSpec('P')
|
20 |
|
21 |
|
22 |
+
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=3584, max=8212)
|
23 |
|
24 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
25 |
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
|