Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
# PyTorch 2.8 (temporary hack)
|
2 |
-
import os
|
3 |
-
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import random
|
@@ -20,39 +16,10 @@ from optimization import optimize_pipeline_
|
|
20 |
# --- Model Loading ---
|
21 |
dtype = torch.bfloat16
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
# scheduler config needed for the LoRA
|
27 |
-
# From https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10
|
28 |
-
scheduler_config = {
|
29 |
-
"base_image_seq_len": 256,
|
30 |
-
"base_shift": math.log(3), # We use shift=3 in distillation
|
31 |
-
"invert_sigmas": False,
|
32 |
-
"max_image_seq_len": 8192,
|
33 |
-
"max_shift": math.log(3), # We use shift=3 in distillation
|
34 |
-
"num_train_timesteps": 1000,
|
35 |
-
"shift": 1.0,
|
36 |
-
"shift_terminal": None, # set shift_terminal to None
|
37 |
-
"stochastic_sampling": False,
|
38 |
-
"time_shift_type": "exponential",
|
39 |
-
"use_beta_sigmas": False,
|
40 |
-
"use_dynamic_shifting": True,
|
41 |
-
"use_exponential_sigmas": False,
|
42 |
-
"use_karras_sigmas": False,
|
43 |
-
}
|
44 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
45 |
-
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=dtype).to(device)
|
46 |
-
|
47 |
-
# lora loading
|
48 |
-
pipe.load_lora_weights(
|
49 |
-
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors", adapter_name="lightx2v"
|
50 |
-
)
|
51 |
-
pipe.set_adapters(["lightx2v"], adapter_weights=[1.])
|
52 |
-
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=1., components=["transformer"])
|
53 |
-
pipe.unload_lora_weights()
|
54 |
-
|
55 |
-
# optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt='prompt')
|
56 |
|
57 |
# --- UI Constants and Helpers ---
|
58 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
16 |
# --- Model Loading ---
|
17 |
dtype = torch.bfloat16
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
|
20 |
|
21 |
+
# --- Ahead-of-time compilation ---
|
22 |
+
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt='prompt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# --- UI Constants and Helpers ---
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|