""" """ from typing import Any from typing import Callable from typing import ParamSpec from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig import spaces import torch from torch.utils._pytree import tree_map, tree_map_only P = ParamSpec('P') TRANSFORMER_HIDDEN_DIM = torch.export.Dim.AUTO(min=3584, max=9727) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': {1: TRANSFORMER_HIDDEN_DIM}, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): with spaces.aoti_capture(pipeline.transformer) as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map(lambda t: None, call.kwargs) # dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda x: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) exported = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, # dynamic_shapes=dynamic_shapes, ) return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) spaces.aoti_apply(compile_transformer(), pipeline.transformer)