Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/ | |
""" | |
from typing import Any | |
from typing import Callable | |
from typing import ParamSpec | |
import spaces | |
import spaces | |
import torch | |
from torch.utils._pytree import tree_map_only | |
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight | |
from diffusers import LTXConditionPipeline | |
from optimization_utils import capture_component_call, aoti_compile, cudagraph | |
P = ParamSpec("P") | |
# Sequence packing in LTX is a bit of a pain. | |
# See: https://github.com/huggingface/diffusers/blob/c052791b5fe29ce8a308bf63dda97aa205b729be/src/diffusers/pipelines/ltx/pipeline_ltx.py#L420 | |
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim.AUTO | |
TRANSFORMER_DYNAMIC_SHAPES = { | |
"hidden_states": {1: TRANSFORMER_NUM_FRAMES_DIM}, | |
} | |
INDUCTOR_CONFIGS = { | |
"conv_1x1_as_mm": True, | |
"epilogue_fusion": False, | |
"coordinate_descent_tuning": True, | |
"coordinate_descent_check_all_directions": True, | |
"max_autotune": False, # doesn't help much | |
"triton.cudagraphs": True, | |
} | |
TRANSFORMER_SPATIAL_PATCH_SIZE = 1 | |
TRANSFORMER_TEMPORAL_PATCH_SIZE = 1 | |
VAE_SPATIAL_COMPRESSION_RATIO = 32 | |
VAE_TEMPORAL_COMPRESSION_RATIO = 8 | |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
num_frames = kwargs.get("num_frames") | |
height = kwargs.get("height") | |
width = kwargs.get("width") | |
latent_num_frames = (num_frames - 1) // VAE_TEMPORAL_COMPRESSION_RATIO + 1 | |
latent_height = height // VAE_SPATIAL_COMPRESSION_RATIO | |
latent_width = width // VAE_SPATIAL_COMPRESSION_RATIO | |
def compile_transformer(): | |
with capture_component_call(pipeline, "transformer") as call: | |
pipeline(*args, **kwargs) | |
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) | |
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
quantize_(pipeline.transformer, float8_dynamic_activation_float8_weight()) | |
hidden_states: torch.Tensor = call.kwargs["hidden_states"] | |
unpacked_hidden_states = LTXConditionPipeline._unpack_latents( | |
hidden_states, | |
latent_num_frames, | |
latent_height, | |
latent_width, | |
TRANSFORMER_SPATIAL_PATCH_SIZE, | |
TRANSFORMER_TEMPORAL_PATCH_SIZE, | |
) | |
unpacked_hidden_states_transposed = unpacked_hidden_states.transpose(-1, -2).contiguous() | |
if unpacked_hidden_states.shape[-1] > hidden_states.shape[-2]: | |
hidden_states_landscape = unpacked_hidden_states | |
hidden_states_portrait = unpacked_hidden_states_transposed | |
else: | |
hidden_states_landscape = unpacked_hidden_states_transposed | |
hidden_states_portrait = unpacked_hidden_states | |
hidden_states_landscape = LTXConditionPipeline._pack_latents( | |
hidden_states_landscape, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE | |
) | |
hidden_states_portrait = LTXConditionPipeline._pack_latents( | |
hidden_states_portrait, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE | |
) | |
exported_landscape = torch.export.export( | |
mod=pipeline.transformer, | |
args=call.args, | |
kwargs=call.kwargs | {"hidden_states": hidden_states_landscape}, | |
dynamic_shapes=dynamic_shapes, | |
) | |
exported_portrait = torch.export.export( | |
mod=pipeline.transformer, | |
args=call.args, | |
kwargs=call.kwargs | {"hidden_states": hidden_states_portrait}, | |
dynamic_shapes=dynamic_shapes, | |
) | |
compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS) | |
compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS) | |
compiled_portrait.weights = ( | |
compiled_landscape.weights | |
) # Avoid weights duplication when serializing back to main process | |
return compiled_landscape, compiled_portrait | |
compiled_landscape, compiled_portrait = compile_transformer() | |
def combined_transformer(*args, **kwargs): | |
hidden_states: torch.Tensor = kwargs["hidden_states"] | |
unpacked_hidden_states = LTXConditionPipeline._unpack_latents( | |
hidden_states, | |
latent_num_frames, | |
latent_height, | |
latent_width, | |
TRANSFORMER_SPATIAL_PATCH_SIZE, | |
TRANSFORMER_TEMPORAL_PATCH_SIZE, | |
) | |
if unpacked_hidden_states.shape[-1] > unpacked_hidden_states.shape[-2]: | |
return compiled_landscape(*args, **kwargs) | |
else: | |
return compiled_portrait(*args, **kwargs) | |
transformer_config = pipeline.transformer.config | |
transformer_dtype = pipeline.transformer.dtype | |
cache_context = pipeline.transformer.cache_context | |
# with torch.no_grad(): | |
# combined_transformer(**call.kwargs) | |
pipeline.transformer = combined_transformer | |
# pipeline.transformer = cudagraph(combined_transformer) | |
# with torch.no_grad(): | |
# pipeline.transformer(**call.kwargs) | |
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue] | |
pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue] | |
pipeline.transformer.cache_context = cache_context |