ltx-dev-fast / optimization.py
sayakpaul's picture
sayakpaul HF Staff
Update optimization.py
1adac55 verified
"""
Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight
from diffusers import LTXConditionPipeline
from optimization_utils import capture_component_call, aoti_compile, cudagraph
P = ParamSpec("P")
# Sequence packing in LTX is a bit of a pain.
# See: https://github.com/huggingface/diffusers/blob/c052791b5fe29ce8a308bf63dda97aa205b729be/src/diffusers/pipelines/ltx/pipeline_ltx.py#L420
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim.AUTO
TRANSFORMER_DYNAMIC_SHAPES = {
"hidden_states": {1: TRANSFORMER_NUM_FRAMES_DIM},
}
INDUCTOR_CONFIGS = {
"conv_1x1_as_mm": True,
"epilogue_fusion": False,
"coordinate_descent_tuning": True,
"coordinate_descent_check_all_directions": True,
"max_autotune": False, # doesn't help much
"triton.cudagraphs": True,
}
TRANSFORMER_SPATIAL_PATCH_SIZE = 1
TRANSFORMER_TEMPORAL_PATCH_SIZE = 1
VAE_SPATIAL_COMPRESSION_RATIO = 32
VAE_TEMPORAL_COMPRESSION_RATIO = 8
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
num_frames = kwargs.get("num_frames")
height = kwargs.get("height")
width = kwargs.get("width")
latent_num_frames = (num_frames - 1) // VAE_TEMPORAL_COMPRESSION_RATIO + 1
latent_height = height // VAE_SPATIAL_COMPRESSION_RATIO
latent_width = width // VAE_SPATIAL_COMPRESSION_RATIO
@spaces.GPU(duration=1500)
def compile_transformer():
with capture_component_call(pipeline, "transformer") as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
quantize_(pipeline.transformer, float8_dynamic_activation_float8_weight())
hidden_states: torch.Tensor = call.kwargs["hidden_states"]
unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
hidden_states,
latent_num_frames,
latent_height,
latent_width,
TRANSFORMER_SPATIAL_PATCH_SIZE,
TRANSFORMER_TEMPORAL_PATCH_SIZE,
)
unpacked_hidden_states_transposed = unpacked_hidden_states.transpose(-1, -2).contiguous()
if unpacked_hidden_states.shape[-1] > hidden_states.shape[-2]:
hidden_states_landscape = unpacked_hidden_states
hidden_states_portrait = unpacked_hidden_states_transposed
else:
hidden_states_landscape = unpacked_hidden_states_transposed
hidden_states_portrait = unpacked_hidden_states
hidden_states_landscape = LTXConditionPipeline._pack_latents(
hidden_states_landscape, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE
)
hidden_states_portrait = LTXConditionPipeline._pack_latents(
hidden_states_portrait, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE
)
exported_landscape = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs | {"hidden_states": hidden_states_landscape},
dynamic_shapes=dynamic_shapes,
)
exported_portrait = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs | {"hidden_states": hidden_states_portrait},
dynamic_shapes=dynamic_shapes,
)
compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS)
compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS)
compiled_portrait.weights = (
compiled_landscape.weights
) # Avoid weights duplication when serializing back to main process
return compiled_landscape, compiled_portrait
compiled_landscape, compiled_portrait = compile_transformer()
@torch.no_grad()
def combined_transformer(*args, **kwargs):
hidden_states: torch.Tensor = kwargs["hidden_states"]
unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
hidden_states,
latent_num_frames,
latent_height,
latent_width,
TRANSFORMER_SPATIAL_PATCH_SIZE,
TRANSFORMER_TEMPORAL_PATCH_SIZE,
)
if unpacked_hidden_states.shape[-1] > unpacked_hidden_states.shape[-2]:
return compiled_landscape(*args, **kwargs)
else:
return compiled_portrait(*args, **kwargs)
transformer_config = pipeline.transformer.config
transformer_dtype = pipeline.transformer.dtype
cache_context = pipeline.transformer.cache_context
# with torch.no_grad():
# combined_transformer(**call.kwargs)
pipeline.transformer = combined_transformer
# pipeline.transformer = cudagraph(combined_transformer)
# with torch.no_grad():
# pipeline.transformer(**call.kwargs)
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]
pipeline.transformer.cache_context = cache_context