Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/ | |
""" | |
import contextlib | |
from contextvars import ContextVar | |
from io import BytesIO | |
from typing import Any, cast | |
from unittest.mock import patch | |
import torch | |
from torch.utils._pytree import tree_map_only | |
from torch._inductor.package.package import package_aoti | |
from torch._inductor.package import load_package | |
from torch.export.pt2_archive._package import AOTICompiledModel | |
from torch.export.pt2_archive._package_weights import Weights | |
INDUCTOR_CONFIGS_OVERRIDES = { | |
"aot_inductor.package_constants_in_so": False, | |
"aot_inductor.package_constants_on_disk": True, | |
"aot_inductor.package": True, | |
} | |
class ZeroGPUWeights: | |
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False): | |
if to_cuda: | |
self.constants_map = {name: tensor.to("cuda") for name, tensor in constants_map.items()} | |
else: | |
self.constants_map = constants_map | |
def __reduce__(self): | |
constants_map: dict[str, torch.Tensor] = {} | |
for name, tensor in self.constants_map.items(): | |
tensor_ = torch.empty_like(tensor, device="cpu").pin_memory() | |
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_() | |
return ZeroGPUWeights, (constants_map, True) | |
class ZeroGPUCompiledModel: | |
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights): | |
self.archive_file = archive_file | |
self.weights = weights | |
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar("compiled_model", default=None) | |
def __call__(self, *args, **kwargs): | |
if (compiled_model := self.compiled_model.get()) is None: | |
# compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file)) | |
# compiled_model = torch._inductor.aoti_load_package(self.archive_file, run_single_threaded=True) | |
compiled_model = load_package(self.archive_file, run_single_threaded=True) | |
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True) | |
self.compiled_model.set(compiled_model) | |
return compiled_model(*args, **kwargs) | |
def __reduce__(self): | |
return ZeroGPUCompiledModel, (self.archive_file, self.weights) | |
def aoti_compile( | |
exported_program: torch.export.ExportedProgram, | |
inductor_configs: dict[str, Any] | None = None, | |
): | |
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES | |
gm = cast(torch.fx.GraphModule, exported_program.module()) | |
assert exported_program.example_inputs is not None | |
args, kwargs = exported_program.example_inputs | |
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs) | |
archive_file = BytesIO() | |
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)] | |
package_aoti(archive_file, files) | |
(weights,) = (artifact for artifact in artifacts if isinstance(artifact, Weights)) | |
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights}, to_cuda=True) | |
return ZeroGPUCompiledModel(archive_file, zerogpu_weights) | |
def capture_component_call( | |
pipeline: Any, | |
component_name: str, | |
component_method="forward", | |
): | |
class CapturedCallException(Exception): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.args = args | |
self.kwargs = kwargs | |
class CapturedCall: | |
def __init__(self): | |
self.args: tuple[Any, ...] = () | |
self.kwargs: dict[str, Any] = {} | |
component = getattr(pipeline, component_name) | |
captured_call = CapturedCall() | |
def capture_call(*args, **kwargs): | |
raise CapturedCallException(*args, **kwargs) | |
with patch.object(component, component_method, new=capture_call): | |
try: | |
yield captured_call | |
except CapturedCallException as e: | |
captured_call.args = e.args | |
captured_call.kwargs = e.kwargs | |
# Taken from | |
# https://github.com/huggingface/flux-fast/blob/5027798d7f69a8e0e478df92f48663c40727f8ea/utils/pipeline_utils.py#L198C1-L231C14 | |
def cudagraph(f): | |
_graphs = {} | |
def f_(*args, **kwargs): | |
key = hash(tuple(tuple(kwargs[a].shape) for a in sorted(kwargs.keys()) | |
if isinstance(kwargs[a], torch.Tensor))) | |
if key in _graphs: | |
# use the cached wrapper if one exists. this will perform CUDAGraph replay | |
wrapped, *_ = _graphs[key] | |
return wrapped(*args, **kwargs) | |
# record a new CUDAGraph and cache it for future use | |
g = torch.cuda.CUDAGraph() | |
in_args, in_kwargs = tree_map_only(torch.Tensor, lambda t: t.clone(), (args, kwargs)) | |
f(*in_args, **in_kwargs) # stream warmup | |
with torch.cuda.graph(g): | |
out_tensors = f(*in_args, **in_kwargs) | |
def wrapped(*args, **kwargs): | |
# note that CUDAGraphs require inputs / outputs to be in fixed memory locations. | |
# inputs must be copied into the fixed input memory locations. | |
[a.copy_(b) for a, b in zip(in_args, args) if isinstance(a, torch.Tensor)] | |
for key in kwargs: | |
if isinstance(kwargs[key], torch.Tensor): | |
in_kwargs[key].copy_(kwargs[key]) | |
g.replay() | |
# clone() outputs on the way out to disconnect them from the fixed output memory | |
# locations. this allows for CUDAGraph reuse without accidentally overwriting memory | |
return [o.clone() for o in out_tensors] | |
# cache function that does CUDAGraph replay | |
_graphs[key] = (wrapped, g, in_args, in_kwargs, out_tensors) | |
return wrapped(*args, **kwargs) | |
return f_ |