Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import LTXConditionPipeline | |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition | |
from diffusers.utils import load_video, export_to_video | |
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight | |
from io import BytesIO | |
import contextlib | |
from typing import Any, cast | |
from unittest.mock import patch | |
import torch | |
from torch._inductor.package.package import package_aoti | |
from torch._inductor.package import load_package | |
from PIL import Image | |
MODEL_ID = "Lightricks/LTX-Video-0.9.8-13B-distilled" | |
LANDSCAPE_WIDTH = 480 | |
LANDSCAPE_HEIGHT = 832 | |
MAX_FRAMES_MODEL = 96 | |
INDUCTOR_CONFIGS = { | |
"conv_1x1_as_mm": True, | |
"epilogue_fusion": False, | |
"coordinate_descent_tuning": True, | |
"coordinate_descent_check_all_directions": True, | |
"max_autotune": False, | |
"triton.cudagraphs": True, | |
} | |
INDUCTOR_CONFIGS_OVERRIDES = { | |
"aot_inductor.package_constants_in_so": False, | |
"aot_inductor.package_constants_on_disk": True, | |
"aot_inductor.package": True, | |
} | |
def capture_component_call( | |
pipeline: LTXConditionPipeline, | |
component_name: str, | |
component_method="forward", | |
): | |
class CapturedCallException(Exception): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.args = args | |
self.kwargs = kwargs | |
class CapturedCall: | |
def __init__(self): | |
self.args: tuple[Any, ...] = () | |
self.kwargs: dict[str, Any] = {} | |
component = getattr(pipeline, component_name) | |
captured_call = CapturedCall() | |
def capture_call(*args, **kwargs): | |
raise CapturedCallException(*args, **kwargs) | |
with patch.object(component, component_method, new=capture_call): | |
try: | |
yield captured_call | |
except CapturedCallException as e: | |
captured_call.args = e.args | |
captured_call.kwargs = e.kwargs | |
pipe = LTXConditionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to("cuda") | |
quantize_(pipe.transformer, float8_dynamic_activation_float8_weight()) | |
resized_image = Image.new("RGB", (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)) | |
video = load_video(export_to_video([resized_image])) | |
condition1 = LTXVideoCondition(video=video, frame_index=0) | |
with capture_component_call(pipe, "transformer") as call: | |
pipe( | |
conditions=[condition1], | |
prompt="prompt", | |
height=LANDSCAPE_HEIGHT, | |
width=LANDSCAPE_WIDTH, | |
num_frames=MAX_FRAMES_MODEL, | |
num_inference_steps=2 | |
) | |
hidden_states: torch.Tensor = call.kwargs["hidden_states"] | |
exported = torch.export.export( | |
mod=pipe.transformer, | |
args=call.args, | |
kwargs=call.kwargs | {"hidden_states": hidden_states}, | |
) | |
assert exported.example_inputs is not None | |
args, kwargs = exported.example_inputs | |
gm = cast(torch.fx.GraphModule, exported.module()) | |
artifacts = torch._inductor.aot_compile( | |
gm, args, kwargs, options=INDUCTOR_CONFIGS | INDUCTOR_CONFIGS_OVERRIDES | |
) | |
archive_file = BytesIO() | |
files = [file for file in artifacts if isinstance(file, str)] | |
package_aoti(archive_file, files) | |
compiled_model = load_package(archive_file, run_single_threaded=True) | |
print("Package loaded.") | |
transformer_config = pipe.transformer.config | |
transformer_dtype = pipe.transformer.dtype | |
cache_context = pipe.transformer.cache_context | |
pipe.transformer = compiled_model | |
pipe.transformer.config = transformer_config | |
pipe.transformer.dtype = transformer_dtype | |
pipe.transformer.cache_context = cache_context | |
print("Configs done.") | |
pipe( | |
conditions=[condition1], | |
prompt="prompt", | |
height=LANDSCAPE_HEIGHT, | |
width=LANDSCAPE_WIDTH, | |
num_frames=MAX_FRAMES_MODEL, | |
num_inference_steps=2 | |
) | |
print("Okay") |