sayakpaul HF Staff commited on
Commit
7f65363
·
1 Parent(s): e2da1c9
Files changed (3) hide show
  1. app.py +46 -23
  2. optimization.py +26 -24
  3. optimization_utils.py +13 -10
app.py CHANGED
@@ -1,6 +1,9 @@
1
  # PyTorch 2.8 (temporary hack)
2
  import os
3
- os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
 
 
 
4
 
5
  # Actual demo code
6
  import spaces
@@ -25,14 +28,14 @@ FIXED_FPS = 24
25
  MIN_FRAMES_MODEL = 8
26
  MAX_FRAMES_MODEL = 96
27
 
28
- MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
29
- MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
30
 
31
  pipe = LTXConditionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to("cuda")
32
  optimize_pipeline_(
33
  pipe,
34
- image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
35
- prompt='prompt',
36
  height=LANDSCAPE_HEIGHT,
37
  width=LANDSCAPE_WIDTH,
38
  num_frames=MAX_FRAMES_MODEL,
@@ -64,6 +67,7 @@ def resize_image_landscape(image: Image.Image) -> Image.Image:
64
  image = image.crop((0, top, width, top + new_height))
65
  return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
66
 
 
67
  def get_duration(
68
  input_image,
69
  prompt,
@@ -82,6 +86,7 @@ def get_duration(
82
  else:
83
  return 60
84
 
 
85
  @spaces.GPU(duration=get_duration)
86
  def generate_video(
87
  input_image,
@@ -96,15 +101,15 @@ def generate_video(
96
  ):
97
  """
98
  Generate a video from an input image using the LTX distilled model.
99
-
100
  This function takes an input image and generates a video animation based on the provided
101
  prompt and parameters. It uses the LTX 13B Distilled Image-to-Video model for fast generation
102
  in 4-8 steps.
103
-
104
  Args:
105
  input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
106
  prompt (str): Text prompt describing the desired animation or motion.
107
- negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
108
  Defaults to default_negative_prompt (contains unwanted visual artifacts).
109
  duration_seconds (float, optional): Duration of the generated video in seconds.
110
  Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
@@ -117,15 +122,15 @@ def generate_video(
117
  randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
118
  Defaults to False.
119
  progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
120
-
121
  Returns:
122
  tuple: A tuple containing:
123
  - video_path (str): Path to the generated video file (.mp4)
124
  - current_seed (int): The seed used for generation (useful when randomize_seed=True)
125
-
126
  Raises:
127
  gr.Error: If input_image is None (no image uploaded).
128
-
129
  Note:
130
  - The function automatically resizes the input image to the target dimensions
131
  - Frame count is calculated as duration_seconds * FIXED_FPS (24)
@@ -135,7 +140,7 @@ def generate_video(
135
  """
136
  if input_image is None:
137
  raise gr.Error("Please upload an input image.")
138
-
139
  num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
140
  current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
141
  resized_image = resize_image(input_image)
@@ -161,39 +166,57 @@ def generate_video(
161
 
162
  return video_path, current_seed
163
 
 
164
  with gr.Blocks() as demo:
165
  gr.Markdown("# Fast few-steps LTX 0.9.8 I2V (13B)")
166
  with gr.Row():
167
  with gr.Column():
168
  input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
169
  prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
170
- duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
171
-
 
 
 
 
 
 
 
172
  with gr.Accordion("Advanced Settings", open=False):
173
  negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
174
  seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
175
  randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
176
- steps_slider = gr.Slider(minimum=1, maximum=10, step=1, value=8, label="Inference Steps")
177
- guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
 
 
178
 
179
  generate_button = gr.Button("Generate Video", variant="primary")
180
  with gr.Column():
181
  video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
182
-
183
  ui_inputs = [
184
- input_image_component, prompt_input,
185
- negative_prompt_input, duration_seconds_input,
186
- guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
 
 
 
 
 
187
  ]
188
  generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
189
 
190
  gr.Examples(
191
- examples=[
192
  ["peng.png", "a penguin playfully dancing in the snow, Antarctica"],
193
  ["forg.jpg", "the frog jumps around"],
194
  ],
195
- inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
 
 
 
196
  )
197
 
198
  if __name__ == "__main__":
199
- demo.queue().launch(mcp_server=True)
 
1
  # PyTorch 2.8 (temporary hack)
2
  import os
3
+
4
+ os.system(
5
+ 'pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces'
6
+ )
7
 
8
  # Actual demo code
9
  import spaces
 
28
  MIN_FRAMES_MODEL = 8
29
  MAX_FRAMES_MODEL = 96
30
 
31
+ MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
32
+ MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
33
 
34
  pipe = LTXConditionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to("cuda")
35
  optimize_pipeline_(
36
  pipe,
37
+ image=Image.new("RGB", (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
38
+ prompt="prompt",
39
  height=LANDSCAPE_HEIGHT,
40
  width=LANDSCAPE_WIDTH,
41
  num_frames=MAX_FRAMES_MODEL,
 
67
  image = image.crop((0, top, width, top + new_height))
68
  return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
69
 
70
+
71
  def get_duration(
72
  input_image,
73
  prompt,
 
86
  else:
87
  return 60
88
 
89
+
90
  @spaces.GPU(duration=get_duration)
91
  def generate_video(
92
  input_image,
 
101
  ):
102
  """
103
  Generate a video from an input image using the LTX distilled model.
104
+
105
  This function takes an input image and generates a video animation based on the provided
106
  prompt and parameters. It uses the LTX 13B Distilled Image-to-Video model for fast generation
107
  in 4-8 steps.
108
+
109
  Args:
110
  input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
111
  prompt (str): Text prompt describing the desired animation or motion.
112
+ negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
113
  Defaults to default_negative_prompt (contains unwanted visual artifacts).
114
  duration_seconds (float, optional): Duration of the generated video in seconds.
115
  Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
 
122
  randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
123
  Defaults to False.
124
  progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
125
+
126
  Returns:
127
  tuple: A tuple containing:
128
  - video_path (str): Path to the generated video file (.mp4)
129
  - current_seed (int): The seed used for generation (useful when randomize_seed=True)
130
+
131
  Raises:
132
  gr.Error: If input_image is None (no image uploaded).
133
+
134
  Note:
135
  - The function automatically resizes the input image to the target dimensions
136
  - Frame count is calculated as duration_seconds * FIXED_FPS (24)
 
140
  """
141
  if input_image is None:
142
  raise gr.Error("Please upload an input image.")
143
+
144
  num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
145
  current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
146
  resized_image = resize_image(input_image)
 
166
 
167
  return video_path, current_seed
168
 
169
+
170
  with gr.Blocks() as demo:
171
  gr.Markdown("# Fast few-steps LTX 0.9.8 I2V (13B)")
172
  with gr.Row():
173
  with gr.Column():
174
  input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
175
  prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
176
+ duration_seconds_input = gr.Slider(
177
+ minimum=MIN_DURATION,
178
+ maximum=MAX_DURATION,
179
+ step=0.1,
180
+ value=MAX_DURATION,
181
+ label="Duration (seconds)",
182
+ info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.",
183
+ )
184
+
185
  with gr.Accordion("Advanced Settings", open=False):
186
  negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
187
  seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
188
  randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
189
+ steps_slider = gr.Slider(minimum=1, maximum=10, step=1, value=8, label="Inference Steps")
190
+ guidance_scale_input = gr.Slider(
191
+ minimum=1.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False
192
+ )
193
 
194
  generate_button = gr.Button("Generate Video", variant="primary")
195
  with gr.Column():
196
  video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
197
+
198
  ui_inputs = [
199
+ input_image_component,
200
+ prompt_input,
201
+ negative_prompt_input,
202
+ duration_seconds_input,
203
+ guidance_scale_input,
204
+ steps_slider,
205
+ seed_input,
206
+ randomize_seed_checkbox,
207
  ]
208
  generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
209
 
210
  gr.Examples(
211
+ examples=[
212
  ["peng.png", "a penguin playfully dancing in the snow, Antarctica"],
213
  ["forg.jpg", "the frog jumps around"],
214
  ],
215
+ inputs=[input_image_component, prompt_input],
216
+ outputs=[video_output, seed_input],
217
+ fn=generate_video,
218
+ cache_examples="lazy",
219
  )
220
 
221
  if __name__ == "__main__":
222
+ demo.queue().launch(mcp_server=True)
optimization.py CHANGED
@@ -16,50 +16,50 @@ from optimization_utils import capture_component_call
16
  from optimization_utils import aoti_compile
17
 
18
 
19
- P = ParamSpec('P')
20
 
21
 
22
  # Sequence packing in LTX is a bit of a pain.
23
  # See: https://github.com/huggingface/diffusers/blob/c052791b5fe29ce8a308bf63dda97aa205b729be/src/diffusers/pipelines/ltx/pipeline_ltx.py#L420
24
- TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('seq_len', min=4680, max=6000)
25
 
26
  TRANSFORMER_DYNAMIC_SHAPES = {
27
- 'hidden_states': {1: TRANSFORMER_NUM_FRAMES_DIM},
28
  }
29
 
30
  INDUCTOR_CONFIGS = {
31
- 'conv_1x1_as_mm': True,
32
- 'epilogue_fusion': False,
33
- 'coordinate_descent_tuning': True,
34
- 'coordinate_descent_check_all_directions': True,
35
- 'max_autotune': True,
36
- 'triton.cudagraphs': True,
37
  }
38
  TRANSFORMER_SPATIAL_PATCH_SIZE = 1
39
  TRANSFORMER_TEMPORAL_PATCH_SIZE = 1
40
  VAE_SPATIAL_COMPRESSION_RATIO = 32
41
  VAE_TEMPORAL_COMPRESSION_RATIO = 8
42
 
 
43
  def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
44
  num_frames = kwargs.get("num_frames")
45
  height = kwargs.get("height")
46
- width = kwargs.get("width")
47
  latent_num_frames = (num_frames - 1) // VAE_TEMPORAL_COMPRESSION_RATIO + 1
48
  latent_height = height // VAE_SPATIAL_COMPRESSION_RATIO
49
- latent_width = width //VAE_SPATIAL_COMPRESSION_RATIO
50
 
51
  @spaces.GPU(duration=1500)
52
  def compile_transformer():
53
-
54
- with capture_component_call(pipeline, 'transformer') as call:
55
  pipeline(*args, **kwargs)
56
-
57
  dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
58
  dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
59
 
60
  quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
61
-
62
- hidden_states: torch.Tensor = call.kwargs['hidden_states']
63
  unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
64
  hidden_states,
65
  latent_num_frames,
@@ -68,7 +68,7 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
68
  TRANSFORMER_SPATIAL_PATCH_SIZE,
69
  TRANSFORMER_TEMPORAL_PATCH_SIZE,
70
  )
71
- unpacked_hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
72
  if unpacked_hidden_states.shape[-1] > hidden_states.shape[-2]:
73
  hidden_states_landscape = unpacked_hidden_states
74
  hidden_states_portrait = unpacked_hidden_states_transposed
@@ -86,27 +86,29 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
86
  exported_landscape = torch.export.export(
87
  mod=pipeline.transformer,
88
  args=call.args,
89
- kwargs=call.kwargs | {'hidden_states': hidden_states_landscape},
90
  dynamic_shapes=dynamic_shapes,
91
  )
92
-
93
  exported_portrait = torch.export.export(
94
  mod=pipeline.transformer,
95
  args=call.args,
96
- kwargs=call.kwargs | {'hidden_states': hidden_states_portrait},
97
  dynamic_shapes=dynamic_shapes,
98
  )
99
 
100
  compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS)
101
  compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS)
102
- compiled_portrait.weights = compiled_landscape.weights # Avoid weights duplication when serializing back to main process
 
 
103
 
104
  return compiled_landscape, compiled_portrait
105
 
106
  compiled_landscape, compiled_portrait = compile_transformer()
107
 
108
  def combined_transformer(*args, **kwargs):
109
- hidden_states: torch.Tensor = kwargs['hidden_states']
110
  unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
111
  hidden_states,
112
  latent_num_frames,
@@ -123,5 +125,5 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
123
  transformer_config = pipeline.transformer.config
124
  transformer_dtype = pipeline.transformer.dtype
125
  pipeline.transformer = combined_transformer
126
- pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
127
- pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]
 
16
  from optimization_utils import aoti_compile
17
 
18
 
19
+ P = ParamSpec("P")
20
 
21
 
22
  # Sequence packing in LTX is a bit of a pain.
23
  # See: https://github.com/huggingface/diffusers/blob/c052791b5fe29ce8a308bf63dda97aa205b729be/src/diffusers/pipelines/ltx/pipeline_ltx.py#L420
24
+ TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim("seq_len", min=4680, max=6000)
25
 
26
  TRANSFORMER_DYNAMIC_SHAPES = {
27
+ "hidden_states": {1: TRANSFORMER_NUM_FRAMES_DIM},
28
  }
29
 
30
  INDUCTOR_CONFIGS = {
31
+ "conv_1x1_as_mm": True,
32
+ "epilogue_fusion": False,
33
+ "coordinate_descent_tuning": True,
34
+ "coordinate_descent_check_all_directions": True,
35
+ "max_autotune": True,
36
+ "triton.cudagraphs": True,
37
  }
38
  TRANSFORMER_SPATIAL_PATCH_SIZE = 1
39
  TRANSFORMER_TEMPORAL_PATCH_SIZE = 1
40
  VAE_SPATIAL_COMPRESSION_RATIO = 32
41
  VAE_TEMPORAL_COMPRESSION_RATIO = 8
42
 
43
+
44
  def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
45
  num_frames = kwargs.get("num_frames")
46
  height = kwargs.get("height")
47
+ width = kwargs.get("width")
48
  latent_num_frames = (num_frames - 1) // VAE_TEMPORAL_COMPRESSION_RATIO + 1
49
  latent_height = height // VAE_SPATIAL_COMPRESSION_RATIO
50
+ latent_width = width // VAE_SPATIAL_COMPRESSION_RATIO
51
 
52
  @spaces.GPU(duration=1500)
53
  def compile_transformer():
54
+ with capture_component_call(pipeline, "transformer") as call:
 
55
  pipeline(*args, **kwargs)
56
+
57
  dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
58
  dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
59
 
60
  quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
61
+
62
+ hidden_states: torch.Tensor = call.kwargs["hidden_states"]
63
  unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
64
  hidden_states,
65
  latent_num_frames,
 
68
  TRANSFORMER_SPATIAL_PATCH_SIZE,
69
  TRANSFORMER_TEMPORAL_PATCH_SIZE,
70
  )
71
+ unpacked_hidden_states_transposed = unpacked_hidden_states.transpose(-1, -2).contiguous()
72
  if unpacked_hidden_states.shape[-1] > hidden_states.shape[-2]:
73
  hidden_states_landscape = unpacked_hidden_states
74
  hidden_states_portrait = unpacked_hidden_states_transposed
 
86
  exported_landscape = torch.export.export(
87
  mod=pipeline.transformer,
88
  args=call.args,
89
+ kwargs=call.kwargs | {"hidden_states": hidden_states_landscape},
90
  dynamic_shapes=dynamic_shapes,
91
  )
92
+
93
  exported_portrait = torch.export.export(
94
  mod=pipeline.transformer,
95
  args=call.args,
96
+ kwargs=call.kwargs | {"hidden_states": hidden_states_portrait},
97
  dynamic_shapes=dynamic_shapes,
98
  )
99
 
100
  compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS)
101
  compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS)
102
+ compiled_portrait.weights = (
103
+ compiled_landscape.weights
104
+ ) # Avoid weights duplication when serializing back to main process
105
 
106
  return compiled_landscape, compiled_portrait
107
 
108
  compiled_landscape, compiled_portrait = compile_transformer()
109
 
110
  def combined_transformer(*args, **kwargs):
111
+ hidden_states: torch.Tensor = kwargs["hidden_states"]
112
  unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
113
  hidden_states,
114
  latent_num_frames,
 
125
  transformer_config = pipeline.transformer.config
126
  transformer_dtype = pipeline.transformer.dtype
127
  pipeline.transformer = combined_transformer
128
+ pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
129
+ pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]
optimization_utils.py CHANGED
@@ -1,6 +1,7 @@
1
  """
2
  Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/
3
  """
 
4
  import contextlib
5
  from contextvars import ContextVar
6
  from io import BytesIO
@@ -15,22 +16,23 @@ from torch.export.pt2_archive._package_weights import Weights
15
 
16
 
17
  INDUCTOR_CONFIGS_OVERRIDES = {
18
- 'aot_inductor.package_constants_in_so': False,
19
- 'aot_inductor.package_constants_on_disk': True,
20
- 'aot_inductor.package': True,
21
  }
22
 
23
 
24
  class ZeroGPUWeights:
25
  def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
26
  if to_cuda:
27
- self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
28
  else:
29
  self.constants_map = constants_map
 
30
  def __reduce__(self):
31
  constants_map: dict[str, torch.Tensor] = {}
32
  for name, tensor in self.constants_map.items():
33
- tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
34
  constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
35
  return ZeroGPUWeights, (constants_map, True)
36
 
@@ -39,13 +41,15 @@ class ZeroGPUCompiledModel:
39
  def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
40
  self.archive_file = archive_file
41
  self.weights = weights
42
- self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
 
43
  def __call__(self, *args, **kwargs):
44
  if (compiled_model := self.compiled_model.get()) is None:
45
  compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
46
  compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
47
  self.compiled_model.set(compiled_model)
48
  return compiled_model(*args, **kwargs)
 
49
  def __reduce__(self):
50
  return ZeroGPUCompiledModel, (self.archive_file, self.weights)
51
 
@@ -62,7 +66,7 @@ def aoti_compile(
62
  archive_file = BytesIO()
63
  files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
64
  package_aoti(archive_file, files)
65
- weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
66
  zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
67
  return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
68
 
@@ -71,9 +75,8 @@ def aoti_compile(
71
  def capture_component_call(
72
  pipeline: Any,
73
  component_name: str,
74
- component_method='forward',
75
  ):
76
-
77
  class CapturedCallException(Exception):
78
  def __init__(self, *args, **kwargs):
79
  super().__init__()
@@ -96,4 +99,4 @@ def capture_component_call(
96
  yield captured_call
97
  except CapturedCallException as e:
98
  captured_call.args = e.args
99
- captured_call.kwargs = e.kwargs
 
1
  """
2
  Taken from https://huggingface.co/spaces/cbensimon/wan2-1-fast/
3
  """
4
+
5
  import contextlib
6
  from contextvars import ContextVar
7
  from io import BytesIO
 
16
 
17
 
18
  INDUCTOR_CONFIGS_OVERRIDES = {
19
+ "aot_inductor.package_constants_in_so": False,
20
+ "aot_inductor.package_constants_on_disk": True,
21
+ "aot_inductor.package": True,
22
  }
23
 
24
 
25
  class ZeroGPUWeights:
26
  def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
27
  if to_cuda:
28
+ self.constants_map = {name: tensor.to("cuda") for name, tensor in constants_map.items()}
29
  else:
30
  self.constants_map = constants_map
31
+
32
  def __reduce__(self):
33
  constants_map: dict[str, torch.Tensor] = {}
34
  for name, tensor in self.constants_map.items():
35
+ tensor_ = torch.empty_like(tensor, device="cpu").pin_memory()
36
  constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
37
  return ZeroGPUWeights, (constants_map, True)
38
 
 
41
  def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
42
  self.archive_file = archive_file
43
  self.weights = weights
44
+ self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar("compiled_model", default=None)
45
+
46
  def __call__(self, *args, **kwargs):
47
  if (compiled_model := self.compiled_model.get()) is None:
48
  compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
49
  compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
50
  self.compiled_model.set(compiled_model)
51
  return compiled_model(*args, **kwargs)
52
+
53
  def __reduce__(self):
54
  return ZeroGPUCompiledModel, (self.archive_file, self.weights)
55
 
 
66
  archive_file = BytesIO()
67
  files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
68
  package_aoti(archive_file, files)
69
+ (weights,) = (artifact for artifact in artifacts if isinstance(artifact, Weights))
70
  zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
71
  return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
72
 
 
75
  def capture_component_call(
76
  pipeline: Any,
77
  component_name: str,
78
+ component_method="forward",
79
  ):
 
80
  class CapturedCallException(Exception):
81
  def __init__(self, *args, **kwargs):
82
  super().__init__()
 
99
  yield captured_call
100
  except CapturedCallException as e:
101
  captured_call.args = e.args
102
+ captured_call.kwargs = e.kwargs