Spaces:
Runtime error
Runtime error
zetavg
commited on
update
Browse files- app.py +1 -1
- llama_lora/ui/finetune_ui.py +4 -2
- llama_lora/ui/main_page.py +5 -0
app.py
CHANGED
|
@@ -42,7 +42,7 @@ def main(
|
|
| 42 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
| 43 |
main_page()
|
| 44 |
|
| 45 |
-
demo.queue(concurrency_count=
|
| 46 |
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
|
|
|
| 42 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
| 43 |
main_page()
|
| 44 |
|
| 45 |
+
demo.queue(concurrency_count=1).launch(server_name=server_name, share=share)
|
| 46 |
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
llama_lora/ui/finetune_ui.py
CHANGED
|
@@ -360,7 +360,7 @@ Train data (first 10):
|
|
| 360 |
|
| 361 |
Global.should_stop_training = False
|
| 362 |
|
| 363 |
-
|
| 364 |
get_base_model(), # base_model
|
| 365 |
get_tokenizer(), # tokenizer
|
| 366 |
os.path.join(Global.data_dir, "lora_models",
|
|
@@ -382,6 +382,8 @@ Train data (first 10):
|
|
| 382 |
None, # resume_from_checkpoint
|
| 383 |
training_callbacks # callbacks
|
| 384 |
)
|
|
|
|
|
|
|
| 385 |
except Exception as e:
|
| 386 |
raise gr.Error(e)
|
| 387 |
|
|
@@ -529,7 +531,7 @@ def finetune_ui():
|
|
| 529 |
with gr.Row():
|
| 530 |
with gr.Column():
|
| 531 |
micro_batch_size = gr.Slider(
|
| 532 |
-
minimum=1, maximum=100, step=1, value=
|
| 533 |
label="Micro Batch Size",
|
| 534 |
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
|
| 535 |
)
|
|
|
|
| 360 |
|
| 361 |
Global.should_stop_training = False
|
| 362 |
|
| 363 |
+
results = Global.train_fn(
|
| 364 |
get_base_model(), # base_model
|
| 365 |
get_tokenizer(), # tokenizer
|
| 366 |
os.path.join(Global.data_dir, "lora_models",
|
|
|
|
| 382 |
None, # resume_from_checkpoint
|
| 383 |
training_callbacks # callbacks
|
| 384 |
)
|
| 385 |
+
return "Done: " + str(results)
|
| 386 |
+
|
| 387 |
except Exception as e:
|
| 388 |
raise gr.Error(e)
|
| 389 |
|
|
|
|
| 531 |
with gr.Row():
|
| 532 |
with gr.Column():
|
| 533 |
micro_batch_size = gr.Slider(
|
| 534 |
+
minimum=1, maximum=100, step=1, value=8,
|
| 535 |
label="Micro Batch Size",
|
| 536 |
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
|
| 537 |
)
|
llama_lora/ui/main_page.py
CHANGED
|
@@ -143,6 +143,11 @@ def main_page_custom_css():
|
|
| 143 |
box-shadow: none;
|
| 144 |
}
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
#dataset_plain_text_input_variables_separator textarea,
|
| 147 |
#dataset_plain_text_input_and_output_separator textarea,
|
| 148 |
#dataset_plain_text_data_separator textarea {
|
|
|
|
| 143 |
box-shadow: none;
|
| 144 |
}
|
| 145 |
|
| 146 |
+
#inference_output > .wrap {
|
| 147 |
+
/* allow users to select text while generation is still in progress */
|
| 148 |
+
pointer-events: none;
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
#dataset_plain_text_input_variables_separator textarea,
|
| 152 |
#dataset_plain_text_input_and_output_separator textarea,
|
| 153 |
#dataset_plain_text_data_separator textarea {
|