Spaces:
Runtime error
Runtime error
zetavg
commited on
make gradio reload faster by using dynamic imports
Browse files- app.py +1 -1
- llama_lora/dynamic_import.py +5 -0
- llama_lora/globals.py +21 -11
- llama_lora/lib/get_device.py +2 -1
- llama_lora/lib/inference.py +1 -0
- llama_lora/models.py +12 -2
- llama_lora/ui/finetune/finetune_ui.py +1 -1
- llama_lora/ui/inference_ui.py +2 -5
app.py
CHANGED
|
@@ -7,8 +7,8 @@ import yaml
|
|
| 7 |
|
| 8 |
from llama_lora.config import Config, process_config
|
| 9 |
from llama_lora.globals import initialize_global
|
| 10 |
-
from llama_lora.models import prepare_base_model
|
| 11 |
from llama_lora.utils.data import init_data_dir
|
|
|
|
| 12 |
from llama_lora.ui.main_page import (
|
| 13 |
main_page, get_page_title
|
| 14 |
)
|
|
|
|
| 7 |
|
| 8 |
from llama_lora.config import Config, process_config
|
| 9 |
from llama_lora.globals import initialize_global
|
|
|
|
| 10 |
from llama_lora.utils.data import init_data_dir
|
| 11 |
+
from llama_lora.models import prepare_base_model
|
| 12 |
from llama_lora.ui.main_page import (
|
| 13 |
main_page, get_page_title
|
| 14 |
)
|
llama_lora/dynamic_import.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def dynamic_import(module):
|
| 5 |
+
return importlib.import_module(module, package='llama_lora')
|
llama_lora/globals.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
import psutil
|
|
@@ -8,10 +9,9 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
|
| 8 |
from numba import cuda
|
| 9 |
import nvidia_smi
|
| 10 |
|
|
|
|
| 11 |
from .config import Config
|
| 12 |
from .utils.lru_cache import LRUCache
|
| 13 |
-
from .utils.model_lru_cache import ModelLRUCache
|
| 14 |
-
from .lib.finetune import train
|
| 15 |
|
| 16 |
|
| 17 |
class Global:
|
|
@@ -22,20 +22,21 @@ class Global:
|
|
| 22 |
version: Union[str, None] = None
|
| 23 |
|
| 24 |
base_model_name: str = ""
|
| 25 |
-
tokenizer_name = None
|
| 26 |
|
| 27 |
# Functions
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
# Training Control
|
| 31 |
-
should_stop_training = False
|
| 32 |
|
| 33 |
# Generation Control
|
| 34 |
-
should_stop_generating = False
|
| 35 |
-
generation_force_stopped_at = None
|
| 36 |
|
| 37 |
# Model related
|
| 38 |
-
loaded_models =
|
| 39 |
loaded_tokenizers = LRUCache(1)
|
| 40 |
new_base_model_that_is_ready_to_be_used = None
|
| 41 |
name_of_new_base_model_that_is_ready_to_be_used = None
|
|
@@ -54,7 +55,12 @@ def initialize_global():
|
|
| 54 |
if commit_hash:
|
| 55 |
Global.version = commit_hash[:8]
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
def get_package_dir():
|
|
@@ -81,6 +87,8 @@ def get_git_commit_hash():
|
|
| 81 |
|
| 82 |
|
| 83 |
def load_gpu_info():
|
|
|
|
|
|
|
| 84 |
print("")
|
| 85 |
try:
|
| 86 |
cc_cores_per_SM_dict = {
|
|
@@ -133,9 +141,11 @@ def load_gpu_info():
|
|
| 133 |
available_cpu_ram_gb = available_cpu_ram / (1024 ** 3)
|
| 134 |
print(
|
| 135 |
f"CPU available memory: {available_cpu_ram} bytes ({available_cpu_ram_mb:.2f} MB) ({available_cpu_ram_gb:.2f} GB)")
|
| 136 |
-
preserve_loaded_models_count = math.floor(
|
|
|
|
| 137 |
if preserve_loaded_models_count > 1:
|
| 138 |
-
print(
|
|
|
|
| 139 |
Global.loaded_models = ModelLRUCache(preserve_loaded_models_count)
|
| 140 |
Global.loaded_tokenizers = LRUCache(preserve_loaded_models_count)
|
| 141 |
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
import os
|
| 3 |
import subprocess
|
| 4 |
import psutil
|
|
|
|
| 9 |
from numba import cuda
|
| 10 |
import nvidia_smi
|
| 11 |
|
| 12 |
+
from .dynamic_import import dynamic_import
|
| 13 |
from .config import Config
|
| 14 |
from .utils.lru_cache import LRUCache
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
class Global:
|
|
|
|
| 22 |
version: Union[str, None] = None
|
| 23 |
|
| 24 |
base_model_name: str = ""
|
| 25 |
+
tokenizer_name: Union[str, None] = None
|
| 26 |
|
| 27 |
# Functions
|
| 28 |
+
inference_generate_fn: Any
|
| 29 |
+
finetune_train_fn: Any
|
| 30 |
|
| 31 |
# Training Control
|
| 32 |
+
should_stop_training: bool = False
|
| 33 |
|
| 34 |
# Generation Control
|
| 35 |
+
should_stop_generating: bool = False
|
| 36 |
+
generation_force_stopped_at: Union[float, None] = None
|
| 37 |
|
| 38 |
# Model related
|
| 39 |
+
loaded_models = LRUCache(1)
|
| 40 |
loaded_tokenizers = LRUCache(1)
|
| 41 |
new_base_model_that_is_ready_to_be_used = None
|
| 42 |
name_of_new_base_model_that_is_ready_to_be_used = None
|
|
|
|
| 55 |
if commit_hash:
|
| 56 |
Global.version = commit_hash[:8]
|
| 57 |
|
| 58 |
+
if not Config.ui_dev_mode:
|
| 59 |
+
ModelLRUCache = dynamic_import('.utils.model_lru_cache').ModelLRUCache
|
| 60 |
+
Global.loaded_models = ModelLRUCache(1)
|
| 61 |
+
Global.inference_generate_fn = dynamic_import('.lib.inference').generate
|
| 62 |
+
Global.finetune_train_fn = dynamic_import('.lib.finetune').train
|
| 63 |
+
load_gpu_info()
|
| 64 |
|
| 65 |
|
| 66 |
def get_package_dir():
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
def load_gpu_info():
|
| 90 |
+
# cuda = importlib.import_module('numba').cuda
|
| 91 |
+
# nvidia_smi = importlib.import_module('nvidia_smi')
|
| 92 |
print("")
|
| 93 |
try:
|
| 94 |
cc_cores_per_SM_dict = {
|
|
|
|
| 141 |
available_cpu_ram_gb = available_cpu_ram / (1024 ** 3)
|
| 142 |
print(
|
| 143 |
f"CPU available memory: {available_cpu_ram} bytes ({available_cpu_ram_mb:.2f} MB) ({available_cpu_ram_gb:.2f} GB)")
|
| 144 |
+
preserve_loaded_models_count = math.floor(
|
| 145 |
+
(available_cpu_ram * 0.8) / total_memory) - 1
|
| 146 |
if preserve_loaded_models_count > 1:
|
| 147 |
+
print(
|
| 148 |
+
f"Will keep {preserve_loaded_models_count} offloaded models in CPU RAM.")
|
| 149 |
Global.loaded_models = ModelLRUCache(preserve_loaded_models_count)
|
| 150 |
Global.loaded_tokenizers = LRUCache(preserve_loaded_models_count)
|
| 151 |
|
llama_lora/lib/get_device.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
-
import
|
| 2 |
|
| 3 |
|
| 4 |
def get_device():
|
|
|
|
| 5 |
device ="cpu"
|
| 6 |
if torch.cuda.is_available():
|
| 7 |
device = "cuda"
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
|
| 3 |
|
| 4 |
def get_device():
|
| 5 |
+
torch = importlib.import_module('torch')
|
| 6 |
device ="cpu"
|
| 7 |
if torch.cuda.is_available():
|
| 8 |
device = "cuda"
|
llama_lora/lib/inference.py
CHANGED
|
@@ -4,6 +4,7 @@ import transformers
|
|
| 4 |
from .get_device import get_device
|
| 5 |
from .streaming_generation_utils import Iteratorize, Stream
|
| 6 |
|
|
|
|
| 7 |
def generate(
|
| 8 |
# model
|
| 9 |
model,
|
|
|
|
| 4 |
from .get_device import get_device
|
| 5 |
from .streaming_generation_utils import Iteratorize, Stream
|
| 6 |
|
| 7 |
+
|
| 8 |
def generate(
|
| 9 |
# model
|
| 10 |
model,
|
llama_lora/models.py
CHANGED
|
@@ -1,21 +1,28 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import gc
|
| 4 |
import json
|
| 5 |
import re
|
| 6 |
|
| 7 |
-
import torch
|
| 8 |
from transformers import (
|
| 9 |
AutoModelForCausalLM, AutoModel,
|
| 10 |
AutoTokenizer, LlamaTokenizer
|
| 11 |
)
|
| 12 |
-
from peft import PeftModel
|
| 13 |
|
| 14 |
from .config import Config
|
| 15 |
from .globals import Global
|
| 16 |
from .lib.get_device import get_device
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def get_new_base_model(base_model_name):
|
| 20 |
if Config.ui_dev_mode:
|
| 21 |
return
|
|
@@ -75,6 +82,7 @@ def get_new_base_model(base_model_name):
|
|
| 75 |
|
| 76 |
|
| 77 |
def _get_model_from_pretrained(model_class, model_name, from_tf=False, force_download=False):
|
|
|
|
| 78 |
device = get_device()
|
| 79 |
|
| 80 |
if device == "cuda":
|
|
@@ -183,6 +191,8 @@ def get_model(
|
|
| 183 |
|
| 184 |
if peft_model_name:
|
| 185 |
device = get_device()
|
|
|
|
|
|
|
| 186 |
|
| 187 |
if device == "cuda":
|
| 188 |
model = PeftModel.from_pretrained(
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
import gc
|
| 5 |
import json
|
| 6 |
import re
|
| 7 |
|
|
|
|
| 8 |
from transformers import (
|
| 9 |
AutoModelForCausalLM, AutoModel,
|
| 10 |
AutoTokenizer, LlamaTokenizer
|
| 11 |
)
|
|
|
|
| 12 |
|
| 13 |
from .config import Config
|
| 14 |
from .globals import Global
|
| 15 |
from .lib.get_device import get_device
|
| 16 |
|
| 17 |
|
| 18 |
+
def get_torch():
|
| 19 |
+
return importlib.import_module('torch')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_peft_model_class():
|
| 23 |
+
return importlib.import_module('peft').PeftModel
|
| 24 |
+
|
| 25 |
+
|
| 26 |
def get_new_base_model(base_model_name):
|
| 27 |
if Config.ui_dev_mode:
|
| 28 |
return
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
def _get_model_from_pretrained(model_class, model_name, from_tf=False, force_download=False):
|
| 85 |
+
torch = get_torch()
|
| 86 |
device = get_device()
|
| 87 |
|
| 88 |
if device == "cuda":
|
|
|
|
| 191 |
|
| 192 |
if peft_model_name:
|
| 193 |
device = get_device()
|
| 194 |
+
torch = get_torch()
|
| 195 |
+
PeftModel = get_peft_model_class()
|
| 196 |
|
| 197 |
if device == "cuda":
|
| 198 |
model = PeftModel.from_pretrained(
|
llama_lora/ui/finetune/finetune_ui.py
CHANGED
|
@@ -550,7 +550,7 @@ Train data (first 10):
|
|
| 550 |
wandb_group += f"/{dataset_from_data_dir}"
|
| 551 |
wandb_tags.append(f"dataset:{dataset_from_data_dir}")
|
| 552 |
|
| 553 |
-
train_output = Global.
|
| 554 |
base_model=base_model_name,
|
| 555 |
tokenizer=tokenizer_name,
|
| 556 |
output_dir=output_dir,
|
|
|
|
| 550 |
wandb_group += f"/{dataset_from_data_dir}"
|
| 551 |
wandb_tags.append(f"dataset:{dataset_from_data_dir}")
|
| 552 |
|
| 553 |
+
train_output = Global.finetune_train_fn(
|
| 554 |
base_model=base_model_name,
|
| 555 |
tokenizer=tokenizer_name,
|
| 556 |
output_dir=output_dir,
|
llama_lora/ui/inference_ui.py
CHANGED
|
@@ -3,14 +3,11 @@ import os
|
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
|
| 6 |
-
import torch
|
| 7 |
-
import transformers
|
| 8 |
from transformers import GenerationConfig
|
| 9 |
|
| 10 |
from ..config import Config
|
| 11 |
from ..globals import Global
|
| 12 |
from ..models import get_model, get_tokenizer, get_device
|
| 13 |
-
from ..lib.inference import generate
|
| 14 |
from ..lib.csv_logger import CSVLogger
|
| 15 |
from ..utils.data import (
|
| 16 |
get_available_template_names,
|
|
@@ -181,7 +178,7 @@ def do_inference(
|
|
| 181 |
'stream_output': stream_output
|
| 182 |
}
|
| 183 |
|
| 184 |
-
for (decoded_output, output, completed) in
|
| 185 |
raw_output_str = str(output)
|
| 186 |
response = prompter.get_response(decoded_output)
|
| 187 |
|
|
@@ -217,7 +214,7 @@ def do_inference(
|
|
| 217 |
|
| 218 |
return
|
| 219 |
except Exception as e:
|
| 220 |
-
raise gr.Error(e)
|
| 221 |
|
| 222 |
|
| 223 |
def handle_stop_generate():
|
|
|
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
|
|
|
|
|
|
|
| 6 |
from transformers import GenerationConfig
|
| 7 |
|
| 8 |
from ..config import Config
|
| 9 |
from ..globals import Global
|
| 10 |
from ..models import get_model, get_tokenizer, get_device
|
|
|
|
| 11 |
from ..lib.csv_logger import CSVLogger
|
| 12 |
from ..utils.data import (
|
| 13 |
get_available_template_names,
|
|
|
|
| 178 |
'stream_output': stream_output
|
| 179 |
}
|
| 180 |
|
| 181 |
+
for (decoded_output, output, completed) in Global.inference_generate_fn(**generation_args):
|
| 182 |
raw_output_str = str(output)
|
| 183 |
response = prompter.get_response(decoded_output)
|
| 184 |
|
|
|
|
| 214 |
|
| 215 |
return
|
| 216 |
except Exception as e:
|
| 217 |
+
raise gr.Error(str(e))
|
| 218 |
|
| 219 |
|
| 220 |
def handle_stop_generate():
|