Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,707 Bytes
a84fd42 724d9c8 a84fd42 4b93eec a84fd42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
device = "cuda"
torch_dtype = torch.bfloat16
model_name_or_path = "X-Omni/X-Omni-Zh"
flux_model_name_or_path = "zhangxiaosong18/FLUX.1-dev-VAE"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch_dtype,
trust_remote_code=True,
).cuda()
model.init_vision(flux_model_name_or_path)
model.set_generation_mode('image')
model.eval()
@spaces.GPU(duration=199) #[uncomment to use ZeroGPU]
def generate_image(
image_prompt,
image_size,
top_p,
min_p,
seed,
):
image_prompt = image_prompt.strip()
image_size = tuple(map(int, image_size.split('x')))
token_h, token_w = image_size[0] // 16, image_size[1] // 16
image_prefix = f'<SOM>{token_h} {token_w}<IMAGE>'
generation_config = GenerationConfig(
max_new_tokens=token_h * token_w,
do_sample=True,
temperature=1.0,
min_p=min_p,
top_p=top_p,
guidance_scale=1.0,
suppress_tokens=tokenizer.convert_tokens_to_ids(model.config.mm_special_tokens),
)
tokens = tokenizer(
[image_prompt + image_prefix],
return_tensors='pt',
padding='longest',
padding_side='left',
)
input_ids = tokens.input_ids.cuda()
attention_mask = tokens.attention_mask.cuda()
torch.manual_seed(seed)
tokens = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
)
torch.manual_seed(seed)
_, images = model.mmdecode(tokenizer, tokens[0], skip_special_tokens=False)
return images[0]
examples = [
'''
生成一张雪中的紫禁城全景封面图,作为北京冬季旅游指南的主题。画面以近景构图展现建筑,红墙金瓦被皑皑白雪覆盖,朱红色宫墙,金黄色瓦片与洁白雪色形成强烈对比,琉璃瓦顶的积雪在阳光下折射出晶莹光泽。前景一枝腊梅花正在盛开,背景为灰蓝色冬日天空,飘落细雪,远处角楼轮廓若隐若现,增添朦胧诗意感。图片上有标题“雪落北平·穿越600年”,另有副标题“北京古建筑雪景深度游”。文字艺术感极强,与图片良好融合起来
'''.strip(),
'''
画面的中心摆放着一个复古花瓶,瓶身主体为浓郁的蓝色,这种蓝色深邃而典雅,仿佛带着岁月的沉淀。花瓶设计极具复古风格,瓶颈处环绕着细致的金色雕花,宛如华丽的项链点缀其上;瓶身绘制着精美的花卉图案,笔触细腻,色彩过渡自然,展现出极高的工艺水准,整体彰显出优雅的古典韵味。花瓶放置在深色木质的圆桌上,旁边搭配了一束新鲜绽放的百合花,为画面增添了几分生机与活力。背景是一幅淡蓝色的壁纸,上面有着若隐若现的花纹,营造出一种静谧而温馨的氛围。图片中的文字信息十分醒目。“家居美学盛典”位于顶部中央,字体较大,在视觉上十分突出,吸引观众的目光;左下角写着“下单直降 100”,下方紧跟数字“399”,强调了价格优惠;右下角有“限量抢购 速来咨询”的提示,引导观众进一步咨询;最底部中央,“前 50 名买一送一”的字样突出促销活动的紧迫性和吸引力。这些文字信息通过巧妙的颜色、大小和背景设计,在空间布局上层次分明,重点突出,有效地引导观众关注促销信息和价格优势。
'''.strip(),
]
examples = [[prompt, '1152x1152', 1.0, 0.03, 0] for prompt in examples]
css = """
.app {
max-width: 800px !important;
margin: 0 auto !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML('''
<h1 style="text-align:center">🎨X-Omni: Reinforcement Learning Makes Discrete Autoregressive Image Generative Models Great Again</h1>
<h3 style="text-align:center">Model: <a href="https://huggingface.co/X-Omni/X-Omni-Zh">X-Omni-Zh</a> (support Chinese text rendering)</h3>
<p align="center">
<a href="https://x-omni-team.github.io">🏠 Project Page</a> |
<a href="https://arxiv.org/pdf/2507.22058">📄 Paper</a> |
<a href="https://github.com/X-Omni-Team/X-Omni">💻 Code</a> |
<a href="https://huggingface.co/collections/X-Omni/x-omni-models-6888aadcc54baad7997d7982">🤗 HuggingFace Model</a>
</p>
'''.strip())
with gr.Row():
textbox = gr.Textbox(lines=2, placeholder='text prompt for image generation', show_label=False)
image = gr.Image(show_label=False, type='pil')
with gr.Row():
button = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
image_size = gr.Dropdown(label="Image Size", choices=["1152x1152", "1152x768", "768x1152"], value="1152x1152")
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=1.0, step=0.01)
min_p = gr.Slider(label="Min P", minimum=0.0, maximum=1.0, value=0.03, step=0.01)
seed_input = gr.Number(label="Seed", value=0, precision=0)
with gr.Row():
gr.Examples(examples=examples, inputs=(textbox, image_size, top_p, min_p, seed_input), outputs=image, fn=generate_image, cache_examples=False, run_on_click=True)
button.click(
generate_image,
inputs=(textbox, image_size, top_p, min_p, seed_input),
outputs=image,
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|