Spaces:
Sleeping
Sleeping
Initial commit
Browse files- .gitignore +2 -0
- app.py +58 -0
- requirements.txt +9 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Virtual environments
|
| 2 |
+
venv
|
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModel, AutoProcessor
|
| 3 |
+
import torch
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
fashion_items = ['top', 'trousers', 'jumper']
|
| 9 |
+
|
| 10 |
+
# Load model and processor
|
| 11 |
+
model_name = 'Marqo/marqo-fashionSigLIP'
|
| 12 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 13 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 14 |
+
|
| 15 |
+
# Preprocess and normalize text data
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
# Ensure truncation and padding are activated
|
| 18 |
+
processed_texts = processor(
|
| 19 |
+
text=fashion_items,
|
| 20 |
+
return_tensors="pt",
|
| 21 |
+
truncation=True, # Ensure text is truncated to fit model input size
|
| 22 |
+
padding=True # Pad shorter sequences so that all are the same length
|
| 23 |
+
)['input_ids']
|
| 24 |
+
|
| 25 |
+
text_features = model.get_text_features(processed_texts)
|
| 26 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
| 27 |
+
|
| 28 |
+
# Prediction function
|
| 29 |
+
def predict_from_url(url):
|
| 30 |
+
# Check if the URL is empty
|
| 31 |
+
if not url:
|
| 32 |
+
return {"Error": "Please input a URL"}
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
image = Image.open(BytesIO(requests.get(url).content))
|
| 36 |
+
except Exception as e:
|
| 37 |
+
return {"Error": f"Failed to load image: {str(e)}"}
|
| 38 |
+
|
| 39 |
+
processed_image = processor(images=image, return_tensors="pt")['pixel_values']
|
| 40 |
+
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
image_features = model.get_image_features(processed_image)
|
| 43 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 44 |
+
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
|
| 45 |
+
|
| 46 |
+
return {fashion_items[i]: float(text_probs[0, i]) for i in range(len(fashion_items))}
|
| 47 |
+
|
| 48 |
+
# Gradio interface
|
| 49 |
+
demo = gr.Interface(
|
| 50 |
+
fn=predict_from_url,
|
| 51 |
+
inputs=gr.Textbox(label="Enter Image URL"),
|
| 52 |
+
outputs=gr.Label(label="Classification Results"),
|
| 53 |
+
title="Fashion Item Classifier",
|
| 54 |
+
allow_flagging="never"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Launch the interface
|
| 58 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
requests
|
| 4 |
+
Pillow
|
| 5 |
+
open_clip_torch
|
| 6 |
+
ftfy
|
| 7 |
+
|
| 8 |
+
# This is only needed for local deployment
|
| 9 |
+
gradio
|