Spaces:
Running
on
Zero
Running
on
Zero
| from functools import lru_cache | |
| import sys | |
| import torch | |
| from modules import config | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| if sys.platform == "darwin": | |
| from modules.devices import mac_devices | |
| def has_mps() -> bool: | |
| if sys.platform != "darwin": | |
| return False | |
| else: | |
| return mac_devices.has_mps | |
| def get_cuda_device_id(): | |
| return ( | |
| int(config.runtime_env_vars.device_id) | |
| if config.runtime_env_vars.device_id is not None | |
| and config.runtime_env_vars.device_id.isdigit() | |
| else 0 | |
| ) or torch.cuda.current_device() | |
| def get_cuda_device_string(): | |
| if config.runtime_env_vars.device_id is not None: | |
| return f"cuda:{config.runtime_env_vars.device_id}" | |
| return "cuda" | |
| def get_available_gpus() -> list[tuple[int, int]]: | |
| """ | |
| Get the list of available GPUs and their free memory. | |
| :return: A list of tuples where each tuple contains (GPU index, free memory in bytes). | |
| """ | |
| available_gpus = [] | |
| for i in range(torch.cuda.device_count()): | |
| props = torch.cuda.get_device_properties(i) | |
| free_memory = props.total_memory - torch.cuda.memory_reserved(i) | |
| available_gpus.append((i, free_memory)) | |
| return available_gpus | |
| def get_memory_available_gpus(min_memory=2048): | |
| available_gpus = get_available_gpus() | |
| memory_available_gpus = [ | |
| gpu for gpu, free_memory in available_gpus if free_memory > min_memory | |
| ] | |
| return memory_available_gpus | |
| def get_target_device_id_or_memory_available_gpu(): | |
| memory_available_gpus = get_memory_available_gpus() | |
| device_id = get_cuda_device_id() | |
| if device_id not in memory_available_gpus: | |
| if len(memory_available_gpus) != 0: | |
| logger.warning( | |
| f"Device {device_id} is not available or does not have enough memory. will try to use {memory_available_gpus}" | |
| ) | |
| config.runtime_env_vars.device_id = str(memory_available_gpus[0]) | |
| else: | |
| logger.warning( | |
| f"Device {device_id} is not available or does not have enough memory. Using CPU instead." | |
| ) | |
| return "cpu" | |
| return get_cuda_device_string() | |
| def get_optimal_device_name(): | |
| if config.runtime_env_vars.use_cpu == "all": | |
| return "cpu" | |
| if torch.cuda.is_available(): | |
| return get_target_device_id_or_memory_available_gpu() | |
| if has_mps(): | |
| return "mps" | |
| return "cpu" | |
| def get_optimal_device(): | |
| return torch.device(get_optimal_device_name()) | |
| def get_device_for(task): | |
| if task in config.cmd_opts.use_cpu or "all" in config.cmd_opts.use_cpu: | |
| return cpu | |
| return get_optimal_device() | |
| def torch_gc(): | |
| try: | |
| if torch.cuda.is_available(): | |
| with torch.cuda.device(get_cuda_device_string()): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| if has_mps(): | |
| mac_devices.torch_mps_gc() | |
| except Exception as e: | |
| logger.error(f"Error in torch_gc", exc_info=True) | |
| cpu: torch.device = torch.device("cpu") | |
| device: torch.device = None | |
| dtype: torch.dtype = torch.float32 | |
| dtype_dvae: torch.dtype = torch.float32 | |
| dtype_vocos: torch.dtype = torch.float32 | |
| dtype_gpt: torch.dtype = torch.float32 | |
| dtype_decoder: torch.dtype = torch.float32 | |
| def reset_device(): | |
| global device | |
| global dtype | |
| global dtype_dvae | |
| global dtype_vocos | |
| global dtype_gpt | |
| global dtype_decoder | |
| if config.runtime_env_vars.half: | |
| dtype = torch.float16 | |
| dtype_dvae = torch.float16 | |
| dtype_vocos = torch.float16 | |
| dtype_gpt = torch.float16 | |
| dtype_decoder = torch.float16 | |
| logger.info("Using half precision: torch.float16") | |
| else: | |
| dtype = torch.float32 | |
| dtype_dvae = torch.float32 | |
| dtype_vocos = torch.float32 | |
| dtype_gpt = torch.float32 | |
| dtype_decoder = torch.float32 | |
| logger.info("Using full precision: torch.float32") | |
| if config.runtime_env_vars.use_cpu == "all": | |
| device = cpu | |
| else: | |
| device = get_optimal_device() | |
| logger.info(f"Using device: {device}") | |
| def first_time_calculation(): | |
| """ | |
| just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and | |
| spends about 2.7 seconds doing that, at least wih NVidia. | |
| """ | |
| x = torch.zeros((1, 1)).to(device, dtype) | |
| linear = torch.nn.Linear(1, 1).to(device, dtype) | |
| linear(x) | |
| x = torch.zeros((1, 1, 3, 3)).to(device, dtype) | |
| conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) | |
| conv2d(x) | |