Spaces:
Sleeping
Sleeping
File size: 10,851 Bytes
0bcc252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# DeepResearch
[Demo](https://jina.ai/deepsearch#demo) | [API](#official-api) | [Evaluation](#evaluation)
Keep searching, reading webpages, reasoning until an answer is found (or the token budget is exceeded). Useful for deeply investigating a query.
```mermaid
---
config:
theme: mc
look: handDrawn
---
flowchart LR
subgraph Loop["until budget exceed"]
direction LR
Search["Search"]
Read["Read"]
Reason["Reason"]
end
Query(["Query"]) --> Loop
Search --> Read
Read --> Reason
Reason --> Search
Loop --> Answer(["Answer"])
```
Unlike OpenAI and Gemini's Deep Research capabilities, we focus solely on **delivering accurate answers through our iterative process**. We don't optimize for long-form articles – if you need quick, precise answers from deep search, you're in the right place. If you're looking for AI-generated reports like OpenAI/Gemini do, this isn't for you.
## Install
```bash
git clone https://github.com/jina-ai/node-DeepResearch.git
cd node-DeepResearch
npm install
```
[安装部署视频教程 on Youtube](https://youtu.be/vrpraFiPUyA)
It is also available on npm but not recommended for now, as the code is still under active development.
## Usage
We use Gemini (latest `gemini-2.0-flash`) / OpenAI / [LocalLLM](#use-local-llm) for reasoning, [Jina Reader](https://jina.ai/reader) for searching and reading webpages, you can get a free API key with 1M tokens from jina.ai.
```bash
export GEMINI_API_KEY=... # for gemini
# export OPENAI_API_KEY=... # for openai
# export LLM_PROVIDER=openai # for openai
export JINA_API_KEY=jina_... # free jina api key, get from https://jina.ai/reader
npm run dev $QUERY
```
### Official API
You can also use our official DeepSearch API, hosted and optimized by Jina AI:
```
https://deepsearch.jina.ai/v1/chat/completions
```
You can use it with any OpenAI-compatible client. For the authentication Bearer, get your Jina API key from https://jina.ai
#### Client integration guidelines
If you are building a web/local/mobile client that uses `Jina DeepSearch API`, here are some design guidelines:
- Our API is fully compatible with [OpenAI API schema](https://platform.openai.com/docs/api-reference/chat/create), this should greatly simplify the integration process. The model name is `jina-deepsearch-v1`.
- Our DeepSearch API is a reasoning+search grounding LLM, so it's best for questions that require deep reasoning and search.
- Two special tokens are introduced `<think>...</think>`, `<references>...</references>`. Please render them with care.
- Guide the user to get a Jina API key from https://jina.ai, with 1M free tokens for new API key.
- There are rate limits, [between 10RPM to 30RPM depending on the API key tier](https://jina.ai/contact-sales#rate-limit).
- [Download Jina AI logo here](https://jina.ai/logo-Jina-1024.zip)
## Demo
> was recorded with `gemini-1.5-flash`, the latest `gemini-2.0-flash` leads to much better results!
Query: `"what is the latest blog post's title from jina ai?"`
3 steps; answer is correct!

Query: `"what is the context length of readerlm-v2?"`
2 steps; answer is correct!

Query: `"list all employees from jina ai that u can find, as many as possible"`
11 steps; partially correct! but im not in the list :(

Query: `"who will be the biggest competitor of Jina AI"`
42 steps; future prediction kind, so it's arguably correct! atm Im not seeing `weaviate` as a competitor, but im open for the future "i told you so" moment.

More examples:
```
# example: no tool calling
npm run dev "1+1="
npm run dev "what is the capital of France?"
# example: 2-step
npm run dev "what is the latest news from Jina AI?"
# example: 3-step
npm run dev "what is the twitter account of jina ai's founder"
# example: 13-step, ambiguious question (no def of "big")
npm run dev "who is bigger? cohere, jina ai, voyage?"
# example: open question, research-like, long chain of thoughts
npm run dev "who will be president of US in 2028?"
npm run dev "what should be jina ai strategy for 2025?"
```
## Use Local LLM
> Note, not every LLM works with our reasoning flow, we need those who support structured output (sometimes called JSON Schema output, object output) well. Feel free to purpose a PR to add more open-source LLMs to the working list.
If you use Ollama or LMStudio, you can redirect the reasoning request to your local LLM by setting the following environment variables:
```bash
export LLM_PROVIDER=openai # yes, that's right - for local llm we still use openai client
export OPENAI_BASE_URL=http://127.0.0.1:1234/v1 # your local llm endpoint
export OPENAI_API_KEY=whatever # random string would do, as we don't use it (unless your local LLM has authentication)
export DEFAULT_MODEL_NAME=qwen2.5-7b # your local llm model name
```
## OpenAI-Compatible Server API
If you have a GUI client that supports OpenAI API (e.g. [CherryStudio](https://docs.cherry-ai.com/), [Chatbox](https://github.com/Bin-Huang/chatbox)) , you can simply config it to use this server.

Start the server:
```bash
# Without authentication
npm run serve
# With authentication (clients must provide this secret as Bearer token)
npm run serve --secret=your_secret_token
```
The server will start on http://localhost:3000 with the following endpoint:
### POST /v1/chat/completions
```bash
# Without authentication
curl http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "jina-deepsearch-v1",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
# With authentication (when server is started with --secret)
curl http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your_secret_token" \
-d '{
"model": "jina-deepsearch-v1",
"messages": [
{
"role": "user",
"content": "Hello!"
}
],
"stream": true
}'
```
Response format:
```json
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "jina-deepsearch-v1",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "YOUR FINAL ANSWER"
},
"logprobs": null,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 12,
"total_tokens": 21
}
}
```
For streaming responses (stream: true), the server sends chunks in this format:
```json
{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "jina-deepsearch-v1",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"delta": {
"content": "..."
},
"logprobs": null,
"finish_reason": null
}]
}
```
Note: The think content in streaming responses is wrapped in XML tags:
```
<think>
[thinking steps...]
</think>
[final answer]
```
## Docker Setup
### Build Docker Image
To build the Docker image for the application, run the following command:
```bash
docker build -t deepresearch:latest .
```
### Run Docker Container
To run the Docker container, use the following command:
```bash
docker run -p 3000:3000 --env GEMINI_API_KEY=your_gemini_api_key --env JINA_API_KEY=your_jina_api_key deepresearch:latest
```
### Docker Compose
You can also use Docker Compose to manage multi-container applications. To start the application with Docker Compose, run:
```bash
docker-compose up
```
## How Does it Work?
Not sure a flowchart helps, but here it is:
```mermaid
flowchart TD
Start([Start]) --> Init[Initialize context & variables]
Init --> CheckBudget{Token budget<br/>exceeded?}
CheckBudget -->|No| GetQuestion[Get current question<br/>from gaps]
CheckBudget -->|Yes| BeastMode[Enter Beast Mode]
GetQuestion --> GenPrompt[Generate prompt]
GenPrompt --> ModelGen[Generate response<br/>using Gemini]
ModelGen --> ActionCheck{Check action<br/>type}
ActionCheck -->|answer| AnswerCheck{Is original<br/>question?}
AnswerCheck -->|Yes| EvalAnswer[Evaluate answer]
EvalAnswer --> IsGoodAnswer{Is answer<br/>definitive?}
IsGoodAnswer -->|Yes| HasRefs{Has<br/>references?}
HasRefs -->|Yes| End([End])
HasRefs -->|No| GetQuestion
IsGoodAnswer -->|No| StoreBad[Store bad attempt<br/>Reset context]
StoreBad --> GetQuestion
AnswerCheck -->|No| StoreKnowledge[Store as intermediate<br/>knowledge]
StoreKnowledge --> GetQuestion
ActionCheck -->|reflect| ProcessQuestions[Process new<br/>sub-questions]
ProcessQuestions --> DedupQuestions{New unique<br/>questions?}
DedupQuestions -->|Yes| AddGaps[Add to gaps queue]
DedupQuestions -->|No| DisableReflect[Disable reflect<br/>for next step]
AddGaps --> GetQuestion
DisableReflect --> GetQuestion
ActionCheck -->|search| SearchQuery[Execute search]
SearchQuery --> NewURLs{New URLs<br/>found?}
NewURLs -->|Yes| StoreURLs[Store URLs for<br/>future visits]
NewURLs -->|No| DisableSearch[Disable search<br/>for next step]
StoreURLs --> GetQuestion
DisableSearch --> GetQuestion
ActionCheck -->|visit| VisitURLs[Visit URLs]
VisitURLs --> NewContent{New content<br/>found?}
NewContent -->|Yes| StoreContent[Store content as<br/>knowledge]
NewContent -->|No| DisableVisit[Disable visit<br/>for next step]
StoreContent --> GetQuestion
DisableVisit --> GetQuestion
BeastMode --> FinalAnswer[Generate final answer] --> End
```
## Evaluation
I kept the evaluation simple, LLM-as-a-judge and collect some [ego questions](./src/evals/ego-questions.json) for evaluation. These are the questions about Jina AI that I know 100% the answer but LLMs do not.
I mainly look at 3 things: total steps, total tokens, and the correctness of the final answer.
```bash
npm run eval ./src/evals/questions.json
```
Here's the table comparing plain `gemini-2.0-flash` and `gemini-2.0-flash + node-deepresearch` on the ego set.
Plain `gemini-2.0-flash` can be run by setting `tokenBudget` to zero, skipping the while-loop and directly answering the question.
It should not be surprised that plain `gemini-2.0-flash` has a 0% pass rate, as I intentionally filtered out the questions that LLMs can answer.
| Metric | gemini-2.0-flash | #188f1bb |
|--------|------------------|----------|
| Pass Rate | 0% | 75% |
| Average Steps | 1 | 4 |
| Maximum Steps | 1 | 13 |
| Minimum Steps | 1 | 2 |
| Median Steps | 1 | 3 |
| Average Tokens | 428 | 68,574 |
| Median Tokens | 434 | 31,541 |
| Maximum Tokens | 463 | 363,655 |
| Minimum Tokens | 374 | 7,963 |
|