Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import logging | |
import math | |
import sys | |
from abc import abstractmethod | |
from collections import defaultdict | |
from functools import partial | |
from typing import ( | |
Callable, | |
Dict, | |
Iterable, | |
List, | |
NamedTuple, | |
Optional, | |
Sequence, | |
Set, | |
Tuple, | |
cast, | |
) | |
from dataclasses import fields | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.backends.cuda | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import einsum | |
from transformers import PreTrainedModel | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.models.auto import AutoModel | |
from transformers.cache_utils import Cache | |
from .configuration_llada import ( | |
LLaDAConfig, | |
StrEnum, | |
InitFnType, | |
ActivationType, | |
BlockType, | |
LayerNormType, | |
ModelConfig, | |
ActivationCheckpointingStrategy, | |
) | |
if sys.version_info.minor > 8: | |
from collections.abc import MutableMapping | |
elif sys.version_info.minor == 8: | |
from typing import MutableMapping | |
else: | |
raise SystemExit("This script supports Python 3.8 or higher") | |
__all__ = [ | |
"LayerNormBase", | |
"LayerNorm", | |
"RMSLayerNorm", | |
"GemmaRMSLayerNorm", | |
"RotaryEmbedding", | |
"Activation", | |
"GELU", | |
"ReLU", | |
"SwiGLU", | |
"LLaDABlock", | |
"LLaDASequentialBlock", | |
"LLaDAModel", | |
"LLaDAOutput", | |
"LLaDAGenerateOutput", | |
] | |
log = logging.getLogger(__name__) | |
class ModuleType(StrEnum): | |
in_module = "in" | |
out_module = "out" | |
emb = "emb" | |
final_out = "final_out" | |
def init_weights( | |
config: ModelConfig, | |
module: Union[nn.Linear, nn.Embedding], | |
d: Optional[int] = None, | |
layer_id: Optional[int] = None, | |
std_factor: float = 1.0, | |
type_of_module: Optional[ModuleType] = None, | |
) -> None: | |
""" | |
Initialize weights of a linear or embedding module. | |
:param config: The model config. | |
:param module: The linear or embedding submodule to initialize. | |
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions | |
for fused layers. | |
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by | |
``1 / sqrt(2 * (layer_id + 1))``. | |
""" | |
d = d if d is not None else config.d_model | |
if config.init_fn == InitFnType.normal: | |
std = config.init_std * std_factor | |
if config.init_cutoff_factor is not None: | |
cutoff_value = config.init_cutoff_factor * std | |
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value) | |
else: | |
nn.init.normal_(module.weight, mean=0.0, std=std) | |
elif config.init_fn == InitFnType.mitchell: | |
std = std_factor / math.sqrt(d) | |
if layer_id is not None: | |
std = std / math.sqrt(2 * (layer_id + 1)) | |
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std) | |
elif config.init_fn == InitFnType.kaiming_normal: | |
nn.init.kaiming_normal_(module.weight, nonlinearity="relu") | |
elif config.init_fn == InitFnType.fan_in: | |
std = std_factor / math.sqrt(d) | |
nn.init.normal_(module.weight, mean=0.0, std=std) | |
elif config.init_fn == InitFnType.full_megatron: | |
if type_of_module is None: | |
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.") | |
cutoff_factor = config.init_cutoff_factor | |
if cutoff_factor is None: | |
cutoff_factor = 3 | |
if type_of_module == ModuleType.in_module: | |
# for att_proj (same as QKV), ff_proj | |
std = config.init_std | |
elif type_of_module == ModuleType.out_module: | |
# for attn_out, ff_out | |
std = config.init_std / math.sqrt(2.0 * config.n_layers) | |
elif type_of_module == ModuleType.emb: | |
# positional embeddings (wpe) | |
# token embeddings (wte) | |
std = config.init_std | |
elif type_of_module == ModuleType.final_out: | |
# final output (ff_out) | |
std = config.d_model**-0.5 | |
else: | |
raise RuntimeError(f"Unknown module type '{type_of_module}'") | |
nn.init.trunc_normal_( | |
module.weight, | |
mean=0.0, | |
std=std, | |
a=-cutoff_factor * std, | |
b=cutoff_factor * std, | |
) | |
else: | |
raise NotImplementedError(config.init_fn) | |
if isinstance(module, nn.Linear): | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False): | |
with torch.no_grad(): | |
module.weight.div_(math.sqrt(2 * config.n_layers)) | |
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False): | |
""" | |
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf`` | |
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``. | |
""" | |
if check_neg_inf: | |
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min) | |
if check_pos_inf: | |
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max) | |
def activation_checkpoint_function(cfg: ModelConfig): | |
preserve_rng_state = ( | |
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0) | |
) | |
from torch.utils.checkpoint import checkpoint | |
return partial( | |
checkpoint, | |
preserve_rng_state=preserve_rng_state, | |
use_reentrant=False, | |
) | |
class BufferCache(dict, MutableMapping[str, torch.Tensor]): | |
""" | |
Cache for attention biases and other things that would normally be stored as buffers. | |
We avoid using buffers because we've run into various issues doing so with FSDP. | |
In general it appears the way FSDP handles buffers is not well-defined. | |
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid | |
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into | |
NaNs when they're synchronized due to casting or some other issue. | |
""" | |
def _non_meta_init_device(config: ModelConfig) -> torch.device: | |
if config.init_device is not None and config.init_device != "meta": | |
return torch.device(config.init_device) | |
else: | |
return torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class Dropout(nn.Dropout): | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
if self.p == 0.0: | |
return input | |
else: | |
return F.dropout(input, self.p, self.training, self.inplace) | |
class LayerNormBase(nn.Module): | |
def __init__( | |
self, | |
config: ModelConfig, | |
*, | |
size: Optional[int] = None, | |
elementwise_affine: Optional[bool] = True, | |
eps: float = 1e-05, | |
): | |
super().__init__() | |
self.config = config | |
self.eps = eps | |
self.normalized_shape = (size or config.d_model,) | |
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine): | |
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device)) | |
use_bias = self.config.bias_for_layer_norm | |
if use_bias is None: | |
use_bias = self.config.include_bias | |
if use_bias: | |
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device)) | |
else: | |
self.register_parameter("bias", None) | |
else: | |
self.register_parameter("bias", None) | |
self.register_parameter("weight", None) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
raise NotImplementedError | |
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase: | |
if config.layer_norm_type == LayerNormType.default: | |
return LayerNorm(config, size=size, low_precision=False, **kwargs) | |
elif config.layer_norm_type == LayerNormType.low_precision: | |
return LayerNorm(config, size=size, low_precision=True, **kwargs) | |
elif config.layer_norm_type == LayerNormType.rms: | |
return RMSLayerNorm(config, size=size, **kwargs) | |
elif config.layer_norm_type == LayerNormType.gemma_rms: | |
return GemmaRMSLayerNorm(config, size=size, **kwargs) | |
else: | |
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'") | |
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor: | |
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function | |
# `is_autocast_cpu_enabled()` for CPU autocast. | |
# See https://github.com/pytorch/pytorch/issues/110966. | |
if tensor.device.type == "cuda" and torch.is_autocast_enabled(): | |
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype()) | |
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled(): | |
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype()) | |
else: | |
return tensor | |
def reset_parameters(self): | |
if self.weight is not None: | |
torch.nn.init.ones_(self.weight) # type: ignore | |
if self.bias is not None: | |
torch.nn.init.zeros_(self.bias) # type: ignore | |
class LayerNorm(LayerNormBase): | |
""" | |
The default :class:`LayerNorm` implementation which can optionally run in low precision. | |
""" | |
def __init__( | |
self, | |
config: ModelConfig, | |
size: Optional[int] = None, | |
low_precision: bool = False, | |
elementwise_affine: Optional[bool] = None, | |
eps: float = 1e-05, | |
): | |
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) | |
self.low_precision = low_precision | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.low_precision: | |
module_device = x.device | |
downcast_x = self._cast_if_autocast_enabled(x) | |
downcast_weight = ( | |
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight | |
) | |
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias | |
with torch.autocast(enabled=False, device_type=module_device.type): | |
return F.layer_norm( | |
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps | |
) | |
else: | |
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps) | |
class RMSLayerNorm(LayerNormBase): | |
""" | |
RMS layer norm, a simplified :class:`LayerNorm` implementation | |
""" | |
def __init__( | |
self, | |
config: ModelConfig, | |
size: Optional[int] = None, | |
elementwise_affine: Optional[bool] = None, | |
eps: float = 1e-5, | |
): | |
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# with torch.autocast(enabled=False, device_type=x.device.type): | |
og_dtype = x.dtype | |
x = x.to(torch.float32) | |
# print(x.dtype,x.shape) | |
variance = x*x | |
# print(variance) | |
variance = variance.mean(dim=-1,keepdim=True) | |
x = x * torch.rsqrt(variance + self.eps) | |
x = x.to(og_dtype) | |
if self.weight is not None: | |
if self.bias is not None: | |
return self.weight * x + self.bias | |
else: | |
return self.weight * x | |
else: | |
return x | |
class GemmaRMSLayerNorm(LayerNormBase): | |
""" | |
Gemma RMS layer norm, a simplified :class:`LayerNorm` implementation | |
""" | |
def __init__( | |
self, | |
config: ModelConfig, | |
size: Optional[int] = None, | |
elementwise_affine: Optional[bool] = None, | |
eps: float = 1e-5, | |
): | |
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
with torch.autocast(enabled=False, device_type=x.device.type): | |
og_dtype = x.dtype | |
x = x.to(torch.float32) | |
variance = x.pow(2).mean(-1, keepdim=True) | |
x = x * torch.rsqrt(variance + self.eps) | |
x = x.to(og_dtype) | |
if self.weight is not None: | |
if self.bias is not None: | |
return x * (1 + self.weight) + self.bias | |
else: | |
return x * (1 + self.weight) | |
else: | |
return x | |
class RotaryEmbedding(nn.Module): | |
""" | |
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864). | |
""" | |
def __init__(self, config: ModelConfig, cache: BufferCache): | |
super().__init__() | |
self.config = config | |
self.__cache = cache | |
# Warm up cache. | |
self.rope_theta = config.rope_theta | |
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config)) | |
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: | |
if ( | |
(pos_sin := self.__cache.get("rope_pos_sin")) is not None | |
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None | |
and pos_sin.shape[-2] >= seq_len | |
and pos_cos.shape[-2] >= seq_len | |
): | |
if pos_sin.device != device: | |
pos_sin = pos_sin.to(device) | |
self.__cache["rope_pos_sin"] = pos_sin | |
if pos_cos.device != device: | |
pos_cos = pos_cos.to(device) | |
self.__cache["rope_pos_cos"] = pos_cos | |
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :] | |
with torch.autocast(device.type, enabled=False): | |
dim = self.config.d_model // self.config.n_heads | |
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)) | |
seq = torch.arange(seq_len, device=device, dtype=torch.float) | |
freqs = einsum("i , j -> i j", seq, inv_freq) | |
positions = torch.cat((freqs, freqs), dim=-1) | |
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :] | |
self.__cache["rope_pos_sin"] = pos_sin | |
self.__cache["rope_pos_cos"] = pos_cos | |
return pos_sin, pos_cos | |
def rotate_half(self, x: torch.Tensor) -> torch.Tensor: | |
B, nh, T, hs = x.size() | |
x = x.view(B, nh, T, 2, hs // 2) | |
x1, x2 = x.unbind(dim=-2) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype) | |
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
if self.config.rope_full_precision: | |
q_, k_ = q.float(), k.float() | |
else: | |
q_, k_ = q, k | |
with torch.autocast(q.device.type, enabled=False): | |
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None | |
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device) | |
pos_sin = pos_sin.type_as(q_) | |
pos_cos = pos_cos.type_as(q_) | |
q_ = self.apply_rotary_pos_emb( | |
pos_sin[:, :, key_len - query_len : key_len, :], | |
pos_cos[:, :, key_len - query_len : key_len, :], | |
q_, | |
) | |
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_) | |
return q_.type_as(q), k_.type_as(k) | |
class Activation(nn.Module): | |
def __init__(self, config: ModelConfig): | |
super().__init__() | |
self.config = config | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
raise NotImplementedError | |
def output_multiplier(self) -> float: | |
raise NotImplementedError | |
def build(cls, config: ModelConfig) -> Activation: | |
if config.activation_type == ActivationType.gelu: | |
return cast(Activation, GELU(approximate="none")) | |
elif config.activation_type == ActivationType.relu: | |
return cast(Activation, ReLU(inplace=False)) | |
elif config.activation_type == ActivationType.silu: | |
return cast(Activation, SiLU(inplace=False)) | |
elif config.activation_type == ActivationType.swiglu: | |
return SwiGLU(config) | |
else: | |
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'") | |
class GELU(nn.GELU): | |
def output_multiplier(self) -> float: | |
return 1.0 | |
class ReLU(nn.ReLU): | |
def output_multiplier(self) -> float: | |
return 1.0 | |
class SiLU(nn.SiLU): | |
def output_multiplier(self) -> float: | |
return 1.0 | |
class SwiGLU(Activation): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x, gate = x.chunk(2, dim=-1) | |
return F.silu(gate) * x | |
def output_multiplier(self) -> float: | |
return 0.5 | |
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor: | |
att_bias = torch.triu( | |
torch.ones(seq_len, seq_len, device=device, dtype=torch.float), | |
diagonal=1, | |
) | |
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min) | |
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore | |
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor: | |
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len: | |
if causal_bias.device != device: | |
causal_bias = causal_bias.to(device) | |
cache["causal_attention_bias"] = causal_bias | |
return causal_bias | |
with torch.autocast(device.type, enabled=False): | |
causal_bias = causal_attention_bias(seq_len, device) | |
cache["causal_attention_bias"] = causal_bias | |
return causal_bias | |
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor: | |
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len) | |
# shape: (1, 1, seq_len, seq_len) | |
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1) | |
alibi_bias.abs_().mul_(-1) | |
# shape: (n_heads,) | |
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device) | |
m.mul_(config.alibi_bias_max / config.n_heads) | |
# shape: (1, n_heads, seq_len, seq_len) | |
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore | |
class LLaDABlock(nn.Module): | |
""" | |
A base class for transformer block implementations. | |
""" | |
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): | |
super().__init__() | |
self.layer_id = layer_id | |
self.config = config | |
self.hidden_size = ( | |
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model | |
) | |
self.__cache = cache | |
assert config.d_model % config.n_heads == 0 | |
self._activation_checkpoint_fn = None | |
# Dropout. | |
self.dropout = Dropout(config.residual_dropout) | |
# Layer norms. | |
self.k_norm: Optional[LayerNormBase] = None | |
self.q_norm: Optional[LayerNormBase] = None | |
if config.attention_layer_norm: | |
self.k_norm = LayerNormBase.build( | |
config, | |
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads, | |
elementwise_affine=config.attention_layer_norm_with_affine, | |
) | |
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine) | |
# Activation function. | |
self.act = Activation.build(config) | |
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0 | |
# Attention output projection. | |
self.attn_out = nn.Linear( | |
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device | |
) | |
# Feed-forward output projection. | |
self.ff_out = nn.Linear( | |
int(self.act.output_multiplier * self.hidden_size), | |
config.d_model, | |
bias=config.include_bias, | |
device=config.init_device, | |
) | |
self.ff_out._is_residual = True # type: ignore | |
# Rotary embeddings. | |
if self.config.rope: | |
self.rotary_emb = RotaryEmbedding(config, self.__cache) | |
self.flash_attn_func = None | |
if config.flash_attention: | |
try: | |
from flash_attn import flash_attn_func # type: ignore | |
self.flash_attn_func = flash_attn_func | |
except ModuleNotFoundError: | |
pass | |
def reset_parameters(self): | |
if self.k_norm is not None: | |
self.k_norm.reset_parameters() | |
if self.q_norm is not None: | |
self.q_norm.reset_parameters() | |
init_weights( | |
self.config, | |
self.attn_out, | |
d=self.config.d_model, | |
layer_id=self.layer_id, | |
type_of_module=ModuleType.out_module, | |
) | |
init_weights( | |
self.config, | |
self.ff_out, | |
d=self.ff_out.in_features, | |
layer_id=self.layer_id, | |
type_of_module=ModuleType.out_module, | |
) | |
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): | |
if strategy == ActivationCheckpointingStrategy.fine_grained: | |
self._activation_checkpoint_fn = activation_checkpoint_function(self.config) | |
else: | |
self._activation_checkpoint_fn = None | |
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor: | |
target_dtype = input_dtype | |
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function | |
# `is_autocast_cpu_enabled()` for CPU autocast. | |
# See https://github.com/pytorch/pytorch/issues/110966. | |
if bias.device.type == "cuda" and torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled(): | |
target_dtype = torch.get_autocast_cpu_dtype() | |
if bias.dtype != target_dtype: | |
bias = bias.to(target_dtype) | |
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False) | |
return bias | |
def _scaled_dot_product_attention( | |
self, | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
attn_mask: Optional[torch.Tensor] = None, | |
dropout_p: float = 0.0, | |
is_causal: bool = False, | |
) -> torch.Tensor: | |
""" | |
Computes scaled dot product attention on query, key and value tensors, using an optional | |
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. | |
""" | |
if self.flash_attn_func is not None and attn_mask is None: | |
r = self.flash_attn_func( | |
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=False | |
) | |
return r.transpose(1, 2) | |
else: | |
# torch's sdpa doesn't support GQA, so we're doing this | |
assert k.size(1) == v.size(1) | |
num_kv_heads = k.size(1) | |
num_q_heads = q.size(1) | |
if num_q_heads != num_kv_heads: | |
assert num_q_heads % num_kv_heads == 0 | |
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) | |
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) | |
# Modify: MDM set causal to False, and with no attn_mask. | |
return F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=attn_mask, | |
dropout_p=dropout_p, | |
is_causal=False, | |
) | |
def attention( | |
self, | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
attention_bias: Optional[torch.Tensor] = None, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | |
B, T, C = q.size() # batch size, sequence length, d_model | |
dtype = k.dtype | |
# Optionally apply layer norm to keys and queries. | |
if self.q_norm is not None and self.k_norm is not None: | |
q = self.q_norm(q).to(dtype=dtype) | |
k = self.k_norm(k).to(dtype=dtype) | |
# Move head forward to be next to the batch dim. | |
# shape: (B, nh, T, hs) | |
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) | |
# shape: (B, n_kv_h, T, hs) | |
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) | |
# shape: (B, n_kv_h, T, hs) | |
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
present = (k, v) if use_cache else None | |
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None | |
if self.config.rope: | |
# Apply rotary embeddings. | |
q, k = self.rotary_emb(q, k) | |
# if attention_bias is not None: | |
# # Resize and cast attention bias. | |
# # The current dtype of the attention bias might not match the dtype that the SDP attn function will | |
# # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding | |
# # as down-casting the attention bias to the autocast precision will result in -infs, which will | |
# # cause the SDP attn function to produce NaNs. | |
# attention_bias = self._cast_attn_bias( | |
# attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype | |
# ) | |
# Get the attention scores. | |
# shape: (B, nh, T, hs) | |
att = self._scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=attention_bias, | |
dropout_p=0.0 if not self.training else self.config.attention_dropout, | |
is_causal=False, | |
) | |
# Re-assemble all head outputs side-by-side. | |
att = att.transpose(1, 2).contiguous().view(B, T, C) | |
# Apply output projection. | |
return self.attn_out(att), present | |
def forward( | |
self, | |
x: torch.Tensor, | |
attention_bias: Optional[torch.FloatTensor] = None, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | |
raise NotImplementedError | |
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> LLaDABlock: | |
if config.block_type == BlockType.sequential: | |
return LLaDASequentialBlock(layer_id, config, cache) | |
elif config.block_type == BlockType.llama: | |
return LLaDALlamaBlock(layer_id, config, cache) | |
else: | |
raise NotImplementedError(f"Unknown block type: '{config.block_type}'") | |
class LLaDASequentialBlock(LLaDABlock): | |
""" | |
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` | |
(plus another skip connection). | |
""" | |
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): | |
super().__init__(layer_id, config, cache) | |
# Layer norms. | |
self.attn_norm = LayerNorm.build(config) | |
self.ff_norm = LayerNorm.build(config) | |
# Attention input projection. Projects x -> (q, k, v) | |
head_dim = config.d_model // config.n_heads | |
self.fused_dims = ( | |
config.d_model, | |
config.effective_n_kv_heads * head_dim, | |
config.effective_n_kv_heads * head_dim, | |
) | |
self.att_proj = nn.Linear( | |
config.d_model, sum(self.fused_dims), bias=config.include_bias | config.include_qkv_bias, device=config.init_device | |
) | |
# Feed-forward input projection. | |
self.ff_proj = nn.Linear( | |
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device | |
) | |
def reset_parameters(self): | |
super().reset_parameters() | |
self.attn_norm.reset_parameters() | |
self.ff_norm.reset_parameters() | |
# NOTE: the standard deviation for these weights does not depend on the layer. | |
init_weights( | |
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module | |
) | |
init_weights( | |
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
attention_bias: Optional[torch.Tensor] = None, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | |
# Get query, key, value projections. | |
# shape: | |
# - for regular attn q, k, v: (batch_size, seq_len, d_model) | |
# - for multi-query attn q: (batch_size, seq_len, d_model) | |
# k, v: (batch_size, seq_len, d_model // n_heads) | |
# - for group query attn q: (batch_size, seq_len, d_model) | |
# k, v: (batch_size, seq_len, d_model // n_kv_heads) | |
if self._activation_checkpoint_fn is not None: | |
q, k, v = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)).split( | |
self.fused_dims, dim=-1 | |
) | |
else: | |
q, k, v = self.att_proj(self.attn_norm(x)).split(self.fused_dims, dim=-1) | |
# Get attention scores. | |
if self._activation_checkpoint_fn is not None: | |
att, cache = self._activation_checkpoint_fn( # type: ignore | |
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache | |
) | |
else: | |
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache) | |
# Add attention scores. | |
# shape: (B, T, C) | |
x = x + self.dropout(att) | |
# Add feed-forward projection. | |
# shape: (batch_size, seq_len, d_model) | |
og_x = x | |
if self._activation_checkpoint_fn is not None: | |
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore | |
else: | |
x = self.ff_norm(x) | |
x = self.ff_proj(x) | |
if self._activation_checkpoint_fn is not None: | |
x = self._activation_checkpoint_fn(self.act, x) # type: ignore | |
else: | |
x = self.act(x) | |
x = self.ff_out(x) | |
x = self.dropout(x) | |
x = og_x + x | |
return x, cache | |
class LLaDALlamaBlock(LLaDABlock): | |
""" | |
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` | |
(plus another skip connection). This block is similar to `LLaDASequentialBlock` | |
but some operations have slightly different implementations to imitate the | |
behavior of Llama. | |
""" | |
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): | |
super().__init__(layer_id, config, cache) | |
# Layer norms. | |
self.attn_norm = LayerNorm.build(config) | |
self.ff_norm = LayerNorm.build(config) | |
self.__cache = cache | |
# Attention input projection. Projects x -> (q, k, v) | |
head_dim = config.d_model // config.n_heads | |
q_proj_out_dim = config.d_model | |
k_proj_out_dim = config.effective_n_kv_heads * head_dim | |
v_proj_out_dim = config.effective_n_kv_heads * head_dim | |
self.q_proj = nn.Linear( | |
config.d_model, q_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device | |
) | |
self.k_proj = nn.Linear( | |
config.d_model, k_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device | |
) | |
self.v_proj = nn.Linear( | |
config.d_model, v_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device | |
) | |
# Feed-forward input projection. | |
self.ff_proj = nn.Linear( | |
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device | |
) | |
# new add | |
self.up_proj = nn.Linear( | |
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device | |
) | |
def reset_parameters(self): | |
super().reset_parameters() | |
self.attn_norm.reset_parameters() | |
self.ff_norm.reset_parameters() | |
# NOTE: the standard deviation for these weights does not depend on the layer. | |
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None) | |
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None) | |
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None) | |
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None) | |
init_weights(self.config, self.up_proj, d=self.config.d_model, layer_id=None) # new add | |
def forward( | |
self, | |
x: torch.Tensor, | |
attention_bias: Optional[torch.Tensor] = None, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | |
# Get query, key, value projections. | |
# shape: | |
# - for regular attn q, k, v: (batch_size, seq_len, d_model) | |
# - for multi-query attn q: (batch_size, seq_len, d_model) | |
# k, v: (batch_size, seq_len, d_model // n_heads) | |
# - for group query attn q: (batch_size, seq_len, d_model) | |
# k, v: (batch_size, seq_len, d_model // n_kv_heads) | |
# print(x) | |
x_normed = self.attn_norm(x) | |
q = self.q_proj(x_normed) | |
k = self.k_proj(x_normed) | |
v = self.v_proj(x_normed) | |
# Get attention scores. | |
if self._activation_checkpoint_fn is not None: | |
att, cache = self._activation_checkpoint_fn( # type: ignore | |
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache | |
) | |
else: | |
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache) | |
# Add attention scores. | |
# shape: (B, T, C) | |
x = x + self.dropout(att) | |
# Add feed-forward projection. | |
# shape: (batch_size, seq_len, d_model) | |
og_x = x | |
if self._activation_checkpoint_fn is not None: | |
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore | |
else: | |
x = self.ff_norm(x) | |
x, x_up = self.ff_proj(x), self.up_proj(x) # new add | |
if self._activation_checkpoint_fn is not None: | |
x = self._activation_checkpoint_fn(self.act, x) # type: ignore | |
else: | |
x = self.act(x) | |
x = x * x_up # new add | |
x = self.ff_out(x) | |
x = self.dropout(x) | |
x = og_x + x | |
return x, cache | |
class LLaDAOutput(NamedTuple): | |
logits: torch.FloatTensor | |
""" | |
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities | |
for the next token *before* normalization via (log) softmax. | |
""" | |
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] | |
""" | |
Attention keys and values from each block. | |
""" | |
hidden_states: Optional[Tuple[torch.Tensor]] | |
""" | |
Hidden states from each block. | |
""" | |
class LLaDAGenerateOutput(NamedTuple): | |
token_ids: torch.LongTensor | |
""" | |
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`. | |
These do *not* include the original input IDs. | |
""" | |
scores: torch.FloatTensor | |
""" | |
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`. | |
""" | |
class LLaDABlockGroup(nn.ModuleList): | |
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None): | |
super().__init__(modules) | |
self.config = config | |
self.layer_offset = layer_offset | |
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None | |
self._activation_checkpoint_fn = activation_checkpoint_function(self.config) | |
def forward( | |
self, | |
x: torch.Tensor, | |
attention_bias: Optional[torch.FloatTensor] = None, | |
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]: | |
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None | |
for block_idx, block in enumerate(self): | |
layer_past = None if layers_past is None else layers_past[block_idx] | |
block_idx += self.layer_offset | |
if ( | |
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two | |
and block_idx % 2 == 0 | |
) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three | |
and block_idx % 3 == 0 | |
) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four | |
and block_idx % 4 == 0 | |
) | |
): | |
# shape: (batch_size, seq_len, d_model) | |
x, cache = self._activation_checkpoint_fn( # type: ignore | |
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache | |
) | |
else: | |
# shape: (batch_size, seq_len, d_model) | |
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache) | |
if attn_key_values is not None: | |
assert cache is not None | |
attn_key_values.append(cache) | |
return x, attn_key_values | |
def reset_parameters(self): | |
for block in self: | |
block.reset_parameters() | |
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): | |
self.activation_checkpointing_strategy = strategy | |
for block in self: | |
block.set_activation_checkpointing(strategy) | |
class LLaDAModel(nn.Module): | |
def __init__(self, config: ModelConfig, init_params: bool = True): | |
super().__init__() | |
self.config = config | |
self.__cache = BufferCache() | |
# Validate config. | |
if self.config.alibi and self.config.flash_attention: | |
raise Exception("ALiBi is currently not supported with FlashAttention") | |
if self.config.alibi and self.config.rope: | |
raise Exception("ALiBi and RoPE are mutually exclusive") | |
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size: | |
if self.config.embedding_size < self.config.vocab_size: | |
raise Exception("embedding size should be at least as big as vocab size") | |
elif self.config.embedding_size % 128 != 0: | |
import warnings | |
warnings.warn( | |
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning | |
) | |
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None | |
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config) | |
if not ( | |
0 < self.config.block_group_size <= self.config.n_layers | |
and self.config.n_layers % self.config.block_group_size == 0 | |
): | |
raise Exception("n layers must be divisible by block group size") | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding( | |
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device | |
), | |
emb_drop=Dropout(config.embedding_dropout), | |
ln_f=LayerNorm.build(config), | |
) | |
) | |
blocks = [LLaDABlock.build(i, config, self.__cache) for i in range(config.n_layers)] | |
if self.config.block_group_size > 1: | |
block_groups = [ | |
LLaDABlockGroup(config, i, blocks[i : i + config.block_group_size]) | |
for i in range(0, config.n_layers, config.block_group_size) | |
] | |
self.transformer.update({"block_groups": nn.ModuleList(block_groups)}) | |
else: | |
self.transformer.update({"blocks": nn.ModuleList(blocks)}) | |
if not (self.config.alibi or self.config.rope): | |
self.transformer.update( | |
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)} | |
) | |
if not config.weight_tying: | |
self.transformer.update( | |
{ | |
"ff_out": nn.Linear( | |
config.d_model, | |
config.embedding_size or config.vocab_size, | |
bias=config.include_bias, | |
device=config.init_device, | |
) | |
} | |
) | |
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights. | |
if init_params and self.config.init_device != "meta": | |
self.reset_parameters() | |
self.__num_fwd_flops: Optional[int] = None | |
# Warm up cache. | |
if self.config.alibi: | |
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config)) | |
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config)) | |
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): | |
self.activation_checkpointing_strategy = strategy | |
if self.config.block_group_size != 1: | |
for block_group in self.transformer.block_groups: | |
block_group.set_activation_checkpointing(strategy) | |
else: | |
for block in self.transformer.blocks: | |
block.set_activation_checkpointing(strategy) | |
def device(self) -> torch.device: | |
device: torch.device = self.transformer.wte.weight.device # type: ignore | |
if device.type == "meta": | |
return _non_meta_init_device(self.config) | |
else: | |
return device | |
def reset_parameters(self): | |
log.info("Initializing model parameters...") | |
# Top-level embeddings / linear layers. | |
init_weights( | |
self.config, | |
self.transformer.wte, # type: ignore | |
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0, | |
type_of_module=ModuleType.emb, | |
) | |
if hasattr(self.transformer, "wpe"): | |
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore | |
# Top-level layer norm. | |
self.transformer.ln_f.reset_parameters() # type: ignore | |
# Output weights. | |
if hasattr(self.transformer, "ff_out"): | |
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore | |
# Let the blocks handle themselves. | |
if self.config.block_group_size == 1: | |
for block in self.transformer.blocks: | |
block.reset_parameters() | |
else: | |
for block_group in self.transformer.block_groups: | |
block_group.reset_parameters() | |
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor: | |
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[ | |
-1 | |
] >= seq_len: | |
if alibi_bias.device != device: | |
alibi_bias = alibi_bias.to(device) | |
self.__cache["alibi_attention_bias"] = alibi_bias | |
return alibi_bias | |
with torch.autocast(device.type, enabled=False): | |
alibi_bias = alibi_attention_bias(seq_len, self.config, device) | |
self.__cache["alibi_attention_bias"] = alibi_bias | |
return alibi_bias | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
input_embeddings: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
attention_bias: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None, | |
use_cache: bool = False, | |
update_kvcache: bool = False, | |
last_logits_only: bool = False, | |
output_hidden_states: Optional[bool] = None, | |
) -> LLaDAOutput: | |
""" | |
:param input_ids: A tensor of shape `(batch_size, seq_len)`. | |
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input | |
embeddings. When provided, it is treated as the output of the input embedding layer. | |
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates | |
which input IDs are masked. A `1` value in the mask means that | |
the corresponding input ID should *not* be ignored. A `0` means | |
that the corresponding input ID is masked. | |
This has the same meaning as the `attention_mask` in HuggingFace's `transformers` | |
library. | |
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`, | |
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used | |
to introduce causal or other biases. | |
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]` | |
indicates that the i-th element in the sequence is allowed to attend to the j-th | |
element in the sequence. | |
If the tensor is a float tensor, it will just be added to the attention | |
scores before the softmax. | |
The default is causal, which corresponds to a lower-diagonal byte matrix of ones. | |
:param past_key_values: Pre-computed keys and values for each attention block. | |
Can be used to speed up sequential decoding. The `input_ids` which have | |
their past given to this model should not be passed as `input_ids` as they have already been computed. | |
:param use_cache: If `True`, return key and value tensors for each block. | |
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence. | |
This can speed up decoding when you only care about the next token. | |
""" | |
# Add Basic MDM Model config check | |
# print(input_ids.dtype) | |
assert not self.config.alibi, "Alibi length extrapolation is not supported for MDM." | |
assert self.config.rope, "Rope must be used in Llama-Encoder for MDM." | |
# assert (past_key_values is None and not use_cache), "The kvcache is not suppotred for MDM." | |
output_hidden_states = output_hidden_states if output_hidden_states is not None else False | |
if past_key_values: | |
assert len(past_key_values) == self.config.n_layers | |
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2] | |
if past_key_values is None: | |
past_length = 0 | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
# Get embeddings of input. | |
# shape: (batch_size, seq_len, d_model) | |
# print(input_ids.dtype,"wte") | |
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore | |
if self.config.input_emb_norm: | |
x = x * (self.config.d_model**0.5) | |
if not (self.config.alibi or self.config.rope): | |
# Get positional embeddings. | |
# shape: (1, seq_len) | |
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0) | |
# shape: (1, seq_len, d_model) | |
pos_emb = self.transformer.wpe(pos) # type: ignore | |
x = pos_emb + x | |
# Add input + positional embeddings and apply dropout. | |
# shape: (batch_size, seq_len, d_model) | |
x = self.transformer.emb_drop(x) # type: ignore | |
# Transform the attention mask into what the blocks expect. | |
if attention_mask is not None and 0.0 in attention_mask: | |
# shape: (batch_size, 1, 1, seq_len) | |
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :] | |
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min | |
else: | |
attention_mask = None | |
# Merge attention mask with attention bias. | |
if ( | |
attention_bias is not None | |
or attention_mask is not None | |
or self.config.alibi | |
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly | |
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute | |
# scores correctly. | |
or past_key_values is not None | |
): | |
if attention_bias is None and self.config.alibi: | |
attention_bias = get_causal_attention_bias( | |
self.__cache, past_length + seq_len, x.device | |
) + self.get_alibi_attention_bias(past_length + seq_len, x.device) | |
elif attention_bias is None: | |
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device) | |
elif attention_bias.dtype in (torch.int8, torch.bool): | |
attention_bias = attention_bias.to(dtype=torch.float) | |
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min) | |
# Transform to the right shape and data type. | |
mask_len = seq_len | |
if attention_mask is not None: | |
mask_len = attention_mask.shape[-1] | |
elif past_key_values is not None: | |
mask_len = past_key_values[0][0].shape[-2] + seq_len | |
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float) | |
# Add in the masking bias. | |
if attention_mask is not None: | |
attention_bias = attention_bias + attention_mask | |
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf. | |
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead | |
# it can produce NaNs. | |
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False) | |
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None | |
# decoder layers | |
all_hidden_states = [] | |
# Apply blocks one-by-one. | |
if self.config.block_group_size == 1: | |
for block_idx, block in enumerate(self.transformer.blocks): | |
if output_hidden_states: | |
# add hidden states | |
all_hidden_states.append(x) | |
layer_past = None if past_key_values is None else past_key_values[block_idx] | |
if ( | |
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two | |
and block_idx % 2 == 0 | |
) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three | |
and block_idx % 3 == 0 | |
) | |
or ( | |
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four | |
and block_idx % 4 == 0 | |
) | |
): | |
# shape: (batch_size, seq_len, d_model) | |
x, cache = self._activation_checkpoint_fn( | |
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache | |
) | |
else: | |
# shape: (batch_size, seq_len, d_model) | |
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache) | |
if attn_key_values is not None: | |
if update_kvcache: | |
cache = (cache[0][:,:,:update_kvcache],cache[1][:,:,:update_kvcache,:]) | |
# print("True") | |
attn_key_values.append(cache) | |
else: | |
for group_idx, block_group in enumerate(self.transformer.block_groups): | |
if output_hidden_states: | |
# add hidden states | |
all_hidden_states.append(x) | |
layers_past = ( | |
None | |
if past_key_values is None | |
else past_key_values[ | |
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size | |
] | |
) | |
x, cache = block_group( | |
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache | |
) | |
if attn_key_values is not None: | |
assert cache is not None | |
attn_key_values.extend(cache) | |
if last_logits_only: | |
# shape: (batch_size, 1, d_model) | |
x = x[:, -1, :].unsqueeze(1) | |
# Apply final layer norm. | |
# shape: (batch_size, seq_len or 1, d_model) | |
x = self.transformer.ln_f(x) # type: ignore | |
if output_hidden_states: | |
# add final hidden state post-final-layernorm, following HuggingFace's convention | |
all_hidden_states.append(x) | |
# Get logits. | |
# shape: (batch_size, seq_len or 1, vocab_size) | |
if self.config.weight_tying: | |
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore | |
else: | |
logits = self.transformer.ff_out(x) # type: ignore | |
if self.config.scale_logits: | |
logits.mul_(1 / math.sqrt(self.config.d_model)) | |
if use_cache == True and update_kvcache == False: | |
attn_key_values=past_key_values | |
return LLaDAOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type] | |
def create_model_config_from_pretrained_config(config: LLaDAConfig): | |
""" | |
Utility function | |
""" | |
kwargs = {} | |
for field in fields(ModelConfig): | |
kwargs[field.name] = getattr(config, field.name) | |
model_config = ModelConfig(**kwargs) | |
return model_config | |
class LLaDAModelLM(PreTrainedModel): | |
""" | |
Extremely barebones HF model wrapper. | |
""" | |
config_class = LLaDAConfig | |
base_model_prefix = "model" | |
_no_split_modules = ["LLaDABlock", "LLaDASequentialBlock", "LLaDALlamaBlock"] | |
def __init__(self, config: LLaDAConfig, model: Optional[LLaDAModel] = None, init_params: bool = False): | |
super().__init__(config) | |
if not model: | |
model_config = create_model_config_from_pretrained_config(config) | |
# Initialize model (always on CPU to start with so we don't run out of GPU memory). | |
model_config.init_device = "cpu" | |
self.model = LLaDAModel(model_config, init_params=init_params) | |
else: | |
self.model = model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
attention_bias: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
update_kvcache: Optional[bool] = False, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[Cache] = None, # This is a hack mitigation of an issue in transformers `4.39.x` | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if use_cache is None: | |
use_cache = self.config.use_cache | |
if output_attentions: | |
raise ValueError("output_attentions is not yet supported in LLaDA") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model.forward( | |
input_ids=input_ids, | |
input_embeddings=inputs_embeds, | |
attention_mask=attention_mask, | |
attention_bias=attention_bias, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
update_kvcache=update_kvcache, | |
output_hidden_states=output_hidden_states, | |
) | |
logits = outputs.logits | |
hidden_states = outputs.hidden_states | |
loss = None | |
if labels is not None: | |
import warnings | |
warnings.warn("Note that for LLaDA, you cannot calculate the loss here.", UserWarning) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
logits=logits, | |
past_key_values=outputs.attn_key_values, | |
hidden_states=hidden_states, | |
) | |
def can_generate(self) -> bool: | |
return True | |
def prepare_inputs_for_generation( | |
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs | |
): | |
if past_key_values: | |
# This is because we want the model to only process the last generated token. | |
input_ids = input_ids[:, -1:] | |
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} | |
model_inputs.update(kwargs) | |
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) | |
return model_inputs | |
# TODO: these are required to make the implementation complete. | |
# def resize_position_embeddings(self, new_num_position_embeddings: int): | |
# pass | |
# | |
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]: | |
# pass | |
# | |
# def _reorder_cache(self, past_key_values, beam_idx): | |
# pass | |
def get_input_embeddings(self) -> torch.nn.Module: | |
return self.model.transformer.wte | |
def set_input_embeddings(self, value: torch.nn.Module): | |
self.model.transformer.wte = value | |
def get_output_embeddings(self): | |
if self.config.weight_tying: | |
return self.model.transformer.wte | |
else: | |
return self.model.transformer.ff_out | |
def set_output_embeddings(self, value: torch.nn.Module): | |
if self.config.weight_tying: | |
self.model.transformer.wte = value | |
else: | |
self.model.transformer.ff_out = value | |
def tie_weights(self): | |
if self.config.weight_tying: | |
self.model.transformer.ff_out = self.model.transformer.wte | |
# Register the model so that it is available for transformer pipelines, auto-loading, etc. | |
AutoModel.register(LLaDAConfig, LLaDAModelLM) |