Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,199 Bytes
171793b ef0de87 171793b 99fb211 ef0de87 68d8a12 39fbf51 ef0de87 39fbf51 ef0de87 71bd0a4 ef0de87 8b7f407 58ed5ef 171793b 99fb211 171793b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import spaces
# Initialize the model only once, outside of any function
# Ensure that CUDA initialization happens within the worker process
model_pipe = None
@spaces.GPU
def generate(model_name, image, text):
global model_pipe
import torch
torch.jit.script = lambda f: f
from t2v_metrics import VQAScore, list_all_vqascore_models
if model_pipe is None:
print("Initializing model...")
model_pipe = VQAScore(model="clip-flant5-xl", device="cuda") # our recommended scoring model
# model_pipe.to("cuda")
print(list_all_vqascore_models())
print("Image:", image)
print("Text:", text)
print("Generating!")
result = model_pipe(images=[image], texts=[text])
return result
iface = gr.Interface(
fn=generate, # function to call
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
outputs="number", # define the type of output
title="VQAScore", # title of the app
description="This model evaluates the similarity between an image and a text prompt."
).launch()
|